Katherina von Dichter
(Brandenburg University of Technology, Cottbus, Germany)
E-mail: vondicht@b-tu.de

Any set $A \subset \mathbb{R}^{n}$ fulfilling $A=t-A$ for some $t \in \mathbb{R}^{n}$ is called symmetric and 0 -symmetric if $t=0$. We denote the family of all (convex) bodies (full-dimensional compact convex sets) by \mathcal{K}^{n} and the family of 0 -symmetric bodies by \mathcal{K}_{0}^{n}. For any $K \in \mathcal{K}^{n}$ the gauge function $\|\cdot\|_{K}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined as

$$
\|x\|_{K}=\inf \{\rho>0: x \in \rho K\} .
$$

In case $K \in \mathcal{K}_{0}^{n}$ we see that $\|\cdot\|_{K}$ defines a norm. However, even for a non-symmetric unit ball K, one may approximate the gauge function by the norms induced from symmetrizations of K

$$
\|x\|_{\operatorname{conv}(K \cup(-K))} \leq\|x\|_{K} \leq\|x\|_{K \cap(-K)} .
$$

It is natural to request that $K \cap(-K)=K=\operatorname{conv}(K \cup(-K))$ if K is symmetric, which is true if and only if 0 is the center of symmetry of K. This motivates the definition of a meaningful center for general K. We introduce one of the most common asymmetry measures, which is best suited to our purposes, and choose the center matching it.

The Minkowski asymmetry of K (denoted by $s(K))$ is defined as

$$
s(K):=\inf \left\{\rho>0: K-c \subset \rho(c-K), \quad c \in \mathbb{R}^{n}\right\}
$$

and a Minkowski center of K is any $c \in \mathbb{R}^{n}$ such that $K-c \subset s(K)(c-K)$. Moreover, if 0 is a Minkowski center, we say K is Minkowski centered. It is well-known that $s(K) \in[1, n]$ for all $K \in \mathcal{K}^{n}$, with $s(K)=1$ if and only if K is symmetric and $s(K)=n$ if and only if K is a simplex.

Notice that there always exists some $x \in \mathbb{R}^{n}$ such that $\alpha(K)\|x\|_{K \cap(-K)}=\|x\|_{\operatorname{conv}(K \cup(-K))}$, which means that we have equality in the complete chain in the equality above for that x if $\alpha(K)=1$. We investigate the region of all possible values for the parameter $\alpha(K)$ for Minkowski centered $K \in \mathcal{K}^{2}$ in dependence of the asymmetry of K.

We show that $\alpha(K) \geq \frac{2}{s(K)+1}$ for all Minkowski centered K, and that in the planar case $\alpha(K)=1$ implies $s(K) \leq \varphi$, where $\varphi=\frac{1+\sqrt{5}}{2} \approx 1.61$ denotes the golden ratio.

We give a complete description of the possible α-values of K in the planar case in dependence of its Minkowski asymmetry. Moreover, we derive the (unique) family of convex bodies that fulfill the upper bound of $\alpha(K)$.
K is called complete (w.r.t. C), if any proper superset of it has a greater diameter than K.
We also present an application on the diagram of the α-values of K for the diameter-width ratio for complete and pseudo-complete sets. We extend the results on the bounds for $\alpha(K)$ and describe the region of all possible values for this parameter for Minkowski centered convex compact set K in dependence of the asymmetry of K.
Theorem 1. Let K be Minkowski centered. Then

$$
\frac{2}{s(K)+1} \leq \alpha(K) \leq \min \left\{1, \frac{s(K)}{s(K)^{2}-1}\right\}
$$

Moreover, for every pair (α, s), such that $\frac{2}{s+1} \leq \alpha \leq \min \left\{1, \frac{s}{s^{2}-1}\right\}$, there exists a Minkowski centered K, such that $s(K)=s$ and $\alpha(K)=\alpha$.

Consider $K \in \mathcal{K}^{n}$ and $C \in \mathcal{K}_{0}^{n}$. For $s \in \mathbb{R}^{n} \backslash\{0\}$ the s-breadth of K w.r.t. C is the distance between the two parallel supporting hyperplanes of K with normal vector s, i.e.,

$$
b_{s}(K, C):=\frac{\max _{x, y \in K} s^{T}(x-y)}{\max _{x \in C} s^{T} x}
$$

The minimal s-breadth

$$
w(K, C):=\min _{s \in \operatorname{mathbb} R^{n} \backslash\{0\}} b_{s}(K, C)
$$

and the maximal s-breadth

$$
D(K, C):=\max _{s \in \mathbb{R}^{n} \backslash\{0\}} b_{s}(K, C)
$$

are called width and diameter of K w.r.t. C, respectively.
We present a quantitative result on the diameter-width ratio for for complete sets.
Theorem 2. Let K, C be convex compact sets and C be 0 -symmetric be such that K is complete w.r.t. C. Then

$$
\frac{D(K, C)}{w(K, C)} \leq \frac{s(K)+1}{2}
$$

Moreover, for $n>2$ even and for any $s \in[1, n-1]$ there exists $K, C \in \mathcal{K}^{n}$ such that K is complete w.r.t. C with $s(K)=s$, such that $\frac{D(K, C)}{w(K, C)}=\frac{s+1}{2}$, while for $n>2$ odd and any $s \in[1, n]$ there exists $K \in \mathcal{K}^{n}$ which is complete w.r.t. C with $s(K)=s$, such that $\frac{D(K, C)}{w(K, C)}=\frac{s+1}{2}$.

