On The possibility of Joining two pairs of points in convex domains using paths

Dovhopiatyi Oleksandr

(Zhytomyr Ivan Franko State University)
E-mail: Alexdov1111111@gmail.com

Recall, that a set C is convex if any pair of points $x, y \in C$ may be joined by some segment which belongs to C, as well. We define the Euclidean distance between sets and the Euclidean diameter by the formulae

$$
d(A, B)=\inf _{x \in A, y \in B}|x-y|, \quad d(A)=\sup _{x, y \in A}|x-y| .
$$

Sometimes we also write $\operatorname{dist}(A, B)$ instead $d(A, B)$ and $\operatorname{diam} E$ instead $d(E)$, as well. As usually, we set

$$
\begin{aligned}
& B\left(x_{0}, r\right)=\left\{x \in \mathbb{R}^{n}:\left|x-x_{0}\right|<r\right\}, \\
& S\left(x_{0}, r\right)=\left\{x \in \mathbb{R}^{n}:\left|x-x_{0}\right|=r\right\} .
\end{aligned}
$$

We emphasize that, the results established here have already been obtained in particular case, when a domain is the unit ball [1]. Concerning some applications of modulus inequalities in the mapping theory, see [2], cf. [3]-[4].

Theorem 1. Let D^{\prime} be a bounded convex domain in \mathbb{R}^{n}, $n \geqslant 2$, and let $E:=B\left(y_{*}, \delta_{*} / 2\right)$ be a ball centered at the point $y_{*} \in D^{\prime}$, where $\delta_{*}:=d\left(y_{*}, \partial D^{\prime}\right)$. Let $z_{0} \in \partial D^{\prime}$. Then for any points $A, B \in B\left(z_{0}, \delta_{*} / 8\right) \cap D^{\prime}$ there are points $C, D \in \overline{B\left(y_{*}, \delta_{*} / 2\right)}$, for which the segments $[A, C]$ and $[B, D]$ are such that

$$
\begin{equation*}
\operatorname{dist}([A, C],[B, D]) \geqslant C_{0} \cdot|A-B| \tag{1}
\end{equation*}
$$

where $C_{0}>0$ is some constant depending only on δ_{*} and $d\left(D^{\prime}\right)$.
Recall that, a Borel function $\rho: \mathbb{R}^{n} \rightarrow[0, \infty]$ is called an admissible for a family Γ of paths γ in \mathbb{R}^{n}, if the relation

$$
\begin{equation*}
\int_{\gamma} \rho(x)|d x| \geqslant 1 \tag{2}
\end{equation*}
$$

holds for any locally rectifiable path $\gamma \in \Gamma$. A modulus of Γ is defined as follows:

$$
\begin{equation*}
M(\Gamma)=\inf _{\rho \in \operatorname{adm} \Gamma}^{\Gamma_{\mathbb{R}^{n}}} \int^{n}(x) d m(x) . \tag{3}
\end{equation*}
$$

The following statements hold.
Corollary 2. Let, under conditions of Theorem 1, Γ denotes the family of all paths joining the segments $[A, C]$ and $[B, D]$ in D^{\prime}. Then

$$
\begin{equation*}
M(\Gamma) \leqslant \frac{m\left(D^{\prime}\right)}{C_{0}^{n}} \cdot \frac{1}{|A-B|^{n}}, \tag{4}
\end{equation*}
$$

where M is the modulus of families of paths defined in (3), $m\left(D^{\prime}\right)$ denotes the Lebesgue measure of D^{\prime}, and C_{0} is a constant in (1).

Corollary 3. Let, under conditions of Theorem 1, Γ denotes the family of all paths joining the segments $[A, C]$ and $[B, D]$ in D^{\prime}. Then

$$
\begin{equation*}
M(\Gamma) \geqslant \widetilde{c_{n}} \cdot \log \left(1+\frac{3 \delta_{*}}{8|A-B|}\right), \tag{5}
\end{equation*}
$$

where M is the modulus of families of paths defined in (3), $\widetilde{c_{n}}>0$ is some constant depending only on n and D^{\prime}.

References

[1] Sevost'yanov E.A. (2022). On logarithmic Hölder continuity of mappings on the boundary. Annales Fennici Mathematici, 47, 251-259.
[2] Martio, O., Ryazanov, V., Srebro, U., Yakubov, E. (2009). Moduli in Modern Mapping Theory. Springer Monographs in Mathematics. New York etc., Springer.
[3] Martio, O., Ryazanov, V., Srebro, U., Yakubov, E. (2004). Mappings with finite length distortion. J. d'Anal. Math., 93, 215-236.
[4] Martio, O., Ryazanov, V., Srebro, U., Yakubov, E. (2005). On Q-homeomorphisms. Ann. Acad. Sci. Fenn. Math., 30(1), 49-69 (2005).

