Homotopy type of stabilizers of functions with non-isolated singularities on surfaces

Bohdan Feshchenko

(Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine) E-mail: fb@imath.kiev.ua

Let M be a smooth compact surface, $\mathcal{D}(M)$ be a group of diffeomorphisms of M, and P be either \mathbb{R} or S^1 . For a smooth function $f: M \to P$ denote by $\mathcal{S}(f)$ a group of f-preserving diffeomorphisms of M, i.e.,

$$\mathcal{S}(f) = \{ h \in \mathcal{D}(M) \, | \, f \circ h = f \},\$$

and by $\mathcal{S}_{id}(f)$ a connected component of $\mathcal{S}(f)$ containing id_M .

In [1] the author considered the following class of functions $\mathcal{F}(M, P)$ and described the homotopy type of $\mathcal{S}_{id}(f)$ for functions from it.

Definition 1. A smooth function $f \in C^{\infty}(M, P)$ on M belongs to the class $\mathcal{F}(M, P)$ if the following conditions are satisfied:

- (1) for each connected component V of the boundary ∂M a function $f|_V$ either takes a constant value or is a covering map,
- (2) a set of critical points Σ_f of f is a disjoint union of smooth submanifolds of M and $\Sigma_f \subset Int(M)$,
- (3) for each connected component C of Σ_f and each critical point $p \in C$ there exist a local chart $(U, \phi : U \to \mathbb{R}^2)$ near p and a chart $(V, \psi : V \to \mathbb{R})$ near $f(p) \in P$ such that $f(U) \subset V$ and a local representation $\psi \circ f \circ \phi^{-1} : \phi(U) \to \psi(V)$ of f is
 - (a) either a homogeneous polynomial $f_p : \mathbb{R}^2 \to \mathbb{R}$ without multiple factors with deg $f_p \ge 2$,
 - (b) or is given by $f_C(x,y) = \pm y^{n_C}$ for some $n_C \in \mathbb{N}_{\geq 2}$ depending of C.

Note that the class $\mathcal{F}(M, P)$ contains the class of *P*-valued Morse-Bott functions on *M*.

Theorem 2 (Theorem 1.2 [1]). For a function $f \in \mathcal{F}(M, P)$ the group $\mathcal{S}_{id}(f)$ is contractible if f has at least one saddle or M is non-oriented, otherwise $\mathcal{S}_{id}(f)$ is homotopy equivalent to S^1 .

References

 Bohdan Feshchenko. Homotopy type of stabilizers of circle-valued functions with non-isolated singularities on surfaces, arXiv:2305.08255, 2023