ON POLYNOMIAL AND REGULAR MAPS OF SPHERES

Marek Golasiński

(Address of the first author) E-mail: marek@matman.uwm.edu.pl

This talk offers some results on to the intersection of algebraic topology and algebraic geometry.

Let K be a field and $X \subseteq K^m$, $Y \subseteq K^n$ algebraic sets. Recall that a map $f = (f_1, \ldots, f_n) : X \to Y$ is called *polynomial* (resp. *regular*) if there are polynomials $F_i, G_i \in \mathbb{R}[X_1, \ldots, X_m]$ such that $f_i(x) = F_i(x)$ (resp. $f_i(x) = \frac{F_i(x)}{G_i(x)}, G_i(X) \neq 0$) with $i = 1, \ldots, n$ for $x \in X$.

Remark 1. If K is a algebraically closed field then the only regular maps of algebraic sets are polynomial maps.

Example 2. (1) Let $K = \mathbb{R}$ or \mathbb{C} , the fields of reals or complex numbers. The *n*-sphere

$$\mathbb{S}^{n}(K) = \{(x_{1}, \dots, x_{n_{1}}) \in \mathbb{K}^{n+1}; x_{1}^{2} + \dots + x_{n+1}^{2} = 1\} = V(X_{0}^{2} + \dots + X_{n}^{2} - 1)$$

is an algebraic set in \mathbb{K}^{n+1} . Write $\mathbb{S}^n(\mathbb{R}) = \mathbb{S}^n$ and notice a diffeomorphism $\mathbb{S}^n(\mathbb{C}) \approx T\mathbb{S}^n$, the tangent bundle of \mathbb{S}^n . Consequently, a homotopy equivalence $\mathbb{S}^n(\mathbb{C}) \simeq \mathbb{S}^n$.

(2) Let $K = \mathbb{R}$, \mathbb{C} , \mathbb{H} with the skew \mathbb{R} -algebra \mathbb{H} of quaternions. The Grassmannian (of *r*-planes in K^n), can be identified with $G_{n,r}(K) = \{A \in M_n(K); A^2 = A, \overline{A} = A^t, \operatorname{rk}(A) = r\}$ for the set $M_n(K)$ of all $n \times n$ -matrices over K.

But, for any idempotent $n \times n$ matrix over K, its rank coincides with the trace. Therefore, $G_{n,r}(K)$ can be viewed as a real affine variety.

Let $X \subseteq \mathbb{R}^m$, $Y \subseteq \mathbb{R}^n$ be algebraic sets. Write [X, Y] for the set of homotopy classes of continuous maps and $[X, Y]_{alg}$ the subset of [X, Y] represented by regular maps. One of the main purposes of the talk is to estimate the size of $\pi_m(\mathbb{S}^n)_{alg} = [\mathbb{S}^m, \mathbb{S}^n]_{alg}$ in $\pi_m(\mathbb{S}^n) = [\mathbb{S}^m, \mathbb{S}^n]$.

Basing on [1], [3] and [4], we aim to show:

Theorem 3. If k = 0, 1, ..., 7 then elements of $\pi_{n+k}(\mathbb{S}^n)$ can be represented by regular maps for $n \ge 1$.

Next, we make use of [2] to show a homeomorphism $TG_{n,r}(K) \xrightarrow{\approx} \operatorname{Idem}_{n,r}(K)$ for the tangent bundle $TG_{n,r}(K)$ of $G_{n,r}(K)$ and $\operatorname{Idem}_{n,r}(K)$, the set of all idempotent $n \times n$ matrices with rank rfor $K = \mathbb{R}, \mathbb{C}, \mathbb{H}$. Finally, we present:

Theorem 4. If $K = \mathbb{R}, \mathbb{C}, \mathbb{H}$ then there is:

(1) a regular deformation retraction $\operatorname{Idem}_{n,r}(K) \to G_{n,r}(K)$;

(2) an injection $\mathcal{P}_{\mathbb{C}}[V_{\mathbb{C}}, \operatorname{Idem}_{n,r}(K)] \to \mathcal{R}_{\mathbb{R}}[V, G_{n,r}(K)]$ from the sets of homotopy classes of complexvalued polynomial to such a set of real-valued regular maps, where $V_{\mathbb{C}}$ denotes the Zariski closure in the affine space \mathbb{C}^n of a subset $V \subset \mathbb{R}^n$.

References

- J. Bochnak, W. Kucharz, Realization of homotopy classes by algebraic mappings, J. Reine Angew. Math. 377, 159-169 (1987).
- [2] M. Golasiński, F. Gómez Ruiz, Polynomial and Regular Maps into Grassmannians, K-Theory 26, 51-68 (2002).
- [3] R. Wood, Polynomial Maps from Spheres to Spheres, Invent. Math. 5, 163-168 (1968).
- [4] R. Wood, Polynomial maps of affine quadratics, Bull. London Math. Soc. 25, 491-497 (1993).