ON HOMOMORPHISMS OF BICYCLIC EXTENSIONS OF ARCHIMEDEAN TOTALLY ORDERED GROUPS

Oleg Gutik

(University of Lviv, Universytetska 1, Lviv, 79000, UKRAINE) *E-mail:* oleg.gutik@lnu.edu.ua

Oksana Prokhorenkova

(University of Lviv, Universytetska 1, Lviv, 79000, UKRAINE) *E-mail:* okcana.proxorenkova@gmail.com

We follow the terminology of [1, 2]. Let G^+ be the positive cone of a totally ordered group. On the set $\mathscr{B}^+(G) = G^+ \times G^+$ we define the semigroup operation "." in the following way

$$(a,b) \cdot (c,d) = \begin{cases} (c \cdot b^{-1} \cdot a, d), & \text{if } b < c; \\ (a,d), & \text{if } b = c; \\ (a,b \cdot c^{-1} \cdot d), & \text{if } b > c, \end{cases}$$

for $a, b, c, d \in G^+$.

Theorem 1. Let G and H be archimedean totally ordered groups. Then every o-homomorphism $\widehat{\varphi}: G \to H$ generates a monoid homomorphism $\widetilde{\varphi}: \mathscr{B}^+(G) \to \mathscr{B}^+(H)$, and every monoid homomorphism $\widehat{\varphi}: \mathscr{B}^+(G) \to \mathscr{B}^+(G) \to \mathscr{B}^+(H)$ generates an o-homomorphism $\widehat{\varphi}: G \to H$, which agree according to the formula

$$(x,y)\widetilde{\varphi} = ((x)\widehat{\varphi},(y)\widehat{\varphi}), \qquad x,y \in G^+.$$

Theorem 2. Let G be an archimedean totally ordered group. Then the semigroup $\operatorname{End}^{o}(G)$ of oendomorphisms of G is isomorphic to the semigroup $\operatorname{End}(\mathscr{B}^{+}(G))$ of endomorphisms of the monoid $\mathscr{B}^{+}(G)$.

We define the category \mathfrak{IDAG} by

- (1) $\mathbf{Ob}(\mathfrak{TOAG}) = \{G: G \text{ is an archimedean totally ordered group}\};$
- (2) $Mor(\mathfrak{TOAG})$ are *o*-homomorphisms of archimedean totally ordered groups,

and the category BEIDAG in the following way

- (1) $\mathbf{Ob}(\mathfrak{BETDAG})$ are bicyclic extensions $\mathscr{B}^+(G)$ of archimedean totally ordered groups $G \in \mathbf{Ob}(\mathfrak{TDAG})$;
- (2) $Mor(\mathfrak{BETDAG})$ are homomorphisms of monoids $\mathscr{B}^+(G) \in Ob(\mathfrak{BETDAG})$.

Theorem 3. The categories IDAG and BEIDAG are isomorphic.

References

[1] M. R. Darnel, Theory of Lattice-Ordered Groups, Marcel Dekker, Inc., New York, 1995.

[2] M. Lawson, Inverse Semigroups. The Theory of Partial Symmetries, Singapore, World Scientific, 1998.