The Interaction of an Infinite Number of Eddy Flows

Oleksii Hukalov
(B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Ukraine)
E-mail: hukalov@ilt.kharkov.ua
Vyacheslav Gordevskyy
(V.N. Karazin Kharkiv National University, Ukraine)

E-mail: gordevskyy2006@gmail.com
The Boltzmann kinetic equation plays an important role in the kinetic theory of gases. In paper [2], we consider this equation for a model of hard spheres that describes particles of any gas which move translationally with a certain linear velocity, collide by the laws of classical mechanics and can not rotate. For this model, the equation has the form [1]

$$
\begin{gather*}
D(f)=Q(f, f), \tag{1}\\
D(f) \equiv \frac{\partial f}{\partial t}+\left(V, \frac{\partial f}{\partial x}\right), \tag{2}\\
Q(f, f) \equiv \frac{d^{2}}{2} \int_{R^{3}} d V_{1} \int_{\Sigma} d \alpha\left|\left(V-V_{1}, \alpha\right)\right| \\
\times\left[f\left(t, x, V_{1}^{\prime}\right) f\left(t, x, V^{\prime}\right)-f(t, x, V) f\left(t, x, V_{1}\right)\right], \tag{3}
\end{gather*}
$$

and $V, V_{1}, V^{\prime}, V_{1}^{\prime}$ are the velocities of particles before and after collision, respectively, determined by the relations

$$
\begin{aligned}
& V^{\prime}=V-\alpha\left(V-V_{1}, \alpha\right), \\
& V_{1}^{\prime}=V_{1}+\alpha\left(V-V_{1}, \alpha\right) .
\end{aligned}
$$

The solution to this equation will be look for in the next form

$$
\begin{equation*}
f(t, x, V)=\sum_{i=1}^{\infty} \varphi_{i}(t, x) M_{i}(t, x, V) \tag{4}
\end{equation*}
$$

where $M_{i}(t, x, V)$ are the exact solutions of the equation (1)-(3)

$$
D\left(M_{i}\right)=Q\left(M_{i}, M_{i}\right)=0
$$

and the coefficient functions $\varphi_{i}(t, x)$ are nonnegative smooth functions on \mathbb{R}^{4} and $\varphi_{i}(t, x) \not \equiv 0$.
As a value of the deviation between the parts of equation (1) we will consider a uniform-integral error of the form

$$
\begin{equation*}
\Delta=\Delta\left(\beta_{i}\right)=\sup _{(t, x) \in \mathbb{R}^{4}} \int_{\mathbb{R}^{3}}|D(f)-Q(f, f)| d V . \tag{5}
\end{equation*}
$$

In the paper [2], several cases of coefficient functions $\varphi_{i}(t, x)$ were obtained for which the deviation (5) can be done arbitrarily small. This is possible thanks to a special selection of hydrodynamic flow parameters.

References

[1] C. Cercignani. Theory and Application of the Boltzmann Equation. Scottish Academic Press, Edinburgh, 1975.
[2] O.O. Hukalov, V.D. Gordevskyy. The Interaction of an Infinite Number of Eddy Flows for the Hard Spheres Model. Journal of Mathematical Physics, Analysis, Geometry, 2: 163-174, 2021.

