Conformal equivalence of 3 -webs

Konovenko N.

(ONTU, Odesa, Ukraine)
E-mail: ngkonovenko@gmail.com
Let 3 -web $W_{3}\left\langle\omega_{1}, w_{2}, \omega_{3}\right\rangle$ defined in a domain D on the conformal plane $\left(\mathbb{R}^{2}, g\right)$. We say that this 3 -web is regular in D if in this domain:
(1) The discriminant

$$
\widetilde{\Delta}=-4 I_{2}+I_{1}^{2}+18 I_{1} I_{2}-4 I_{1}^{3}-27 I_{2}^{3}
$$

differs from zero.
(2) Invariants

$$
I_{1}=\frac{J_{2}}{J_{1}^{2}} \quad \text { and } \quad I_{2}=\frac{J_{3}}{J_{1}^{3}}
$$

are functionally independent in the domain, that is, the differential 2-form $\Omega=d I_{1} \wedge d I_{2} \neq 0$. Moreover, invariants I_{1}, I_{2} are coordinates in the domain.
We remark that the elementary symmetric functions

$$
\begin{aligned}
& J_{1}=\lambda_{1}+\lambda_{2}+\lambda_{3} \\
& J_{2}=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}, \\
& J_{3}=\lambda_{1} \lambda_{2} \lambda_{3}
\end{aligned}
$$

are S_{3} - invariants and $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are positive smooth functions.
Let's number now forms $\omega_{1}, w_{2}, \omega_{3}$ in the domain and say that the 3 -web is oriented in the domain if in this numbering $\omega_{1} \wedge \omega_{2}=r_{12} \Omega$, where $r_{12}>0$. In this case we'll scale forms ω_{i} in such a way, that

$$
\omega_{1} \wedge \omega_{2}=\Omega .
$$

In opposite case, we call the 3 -web non-oriented and scale the 1 -forms ω_{i} in such a way, that

$$
\omega_{1} \wedge \omega_{2}=-\Omega
$$

In these both cases we decompose 1 -forms ω_{i} in the invariant coordinates I_{1}, I_{2}

$$
\omega_{i}=\sum_{j=1}^{2} w_{i j} d I_{j},
$$

Then, all functions $w_{i j}, i=1,2,3 ; j=1,2$ are conformal invariants, satisfying the following additional relations

$$
\sum_{i=1}^{3} w_{i j}=0, j=1,2 .
$$

Now, let's write down the standard metric tensor g in invariant coordinates as follows

$$
g=\sum_{i, j=1}^{2} g_{i j} d I_{i} \otimes d I_{j} .
$$

Remark, that the volume 2-form Ω_{g}, associated with metric g, is the following

$$
\Omega_{g}=\sqrt{\operatorname{det}\left\|g_{i j}\right\|} d I_{1} \wedge d I_{2}
$$

Therefore, the metric tensor

$$
\widetilde{g}=\frac{g}{\sqrt{\operatorname{det}\left\|g_{i j}\right\|}}
$$

has the associated volume form $\Omega_{\widetilde{g}}=\Omega$.
Finally, we get the following result.
Theorem 1. Let 3-web $W_{3}\left\langle\omega_{1}, w_{2}, \omega_{3}\right\rangle$ be regular in a domain D in the conformal plane $\left(\mathbb{R}^{2}, g\right)$. Then the above functions

$$
w_{i j}, \quad \widetilde{g}_{i j}=\frac{g_{i j}}{\sqrt{\operatorname{det}\left\|g_{i j}\right\|}}
$$

that are components of 1-forms ω_{1}, ω_{2} and the metric tensor \widetilde{g} in the invariant coordinates I_{1}, I_{2}, are conformal invariants of plane 3-webs.

Moreover, any two regular 3-webs are conformly equivalent if and only if the corresponding functions $w_{i j}$ and $\widetilde{g}_{i j}$ coinside.

