Let 3-web $W_3\langle \omega_1, w_2, \omega_3 \rangle$ defined in a domain D on the conformal plane (\mathbb{R}^2, g). We say that this 3-web is regular in D if in this domain:

1. The discriminant
 \[\tilde{\Delta} = -4I_2 + I_1^2 + 18I_1^2I_2 - 4I_1^3 - 27I_2^3 \]
 differs from zero.

2. Invariants
 \[I_1 = \frac{J_2}{J_1^2}, \quad I_2 = \frac{J_3}{J_1^3} \]
 are functionally independent in the domain, that is, the differential 2-form $\Omega = dI_1 \wedge dI_2 \neq 0$. Moreover, invariants I_1, I_2 are coordinates in the domain.

We remark that the elementary symmetric functions
 \[J_1 = \lambda_1 + \lambda_2 + \lambda_3, \quad J_2 = \lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3, \quad J_3 = \lambda_1\lambda_2\lambda_3 \]
are S_3-invariants and $\lambda_1, \lambda_2, \lambda_3$ are positive smooth functions.

Let's number now forms ω_1, w_2, ω_3 in the domain and say that the 3-web is oriented in the domain if in this numbering $\omega_1 \wedge \omega_2 = r_{12} \Omega$, where $r_{12} > 0$. In this case we'll scale forms ω_i in such a way, that $\omega_1 \wedge \omega_2 = \Omega$.

In opposite case, we call the 3-web non-oriented and scale the 1-forms ω_i in such a way, that $\omega_1 \wedge \omega_2 = -\Omega$.

In these both cases we decompose 1-forms ω_i in the invariant coordinates I_1, I_2

\[\omega_i = \sum_{j=1}^{2} w_{ij} dI_j, \]

Then, all functions $w_{ij}, i = 1, 2, 3; j = 1, 2$ are conformal invariants, satisfying the following additional relations

\[\sum_{i=1}^{3} w_{ij} = 0, \quad j = 1, 2. \]

Now, let's write down the standard metric tensor g in invariant coordinates as follows

\[g = \sum_{i,j=1}^{2} g_{ij} dI_i \otimes dI_j. \]

Remark, that the volume 2-form Ω_g, associated with metric g, is the following

\[\Omega_g = \sqrt{\det \| g_{ij} \|} dI_1 \wedge dI_2. \]
Therefore, the metric tensor
\[\tilde{g} = \frac{g}{\sqrt{\det \| g_{ij} \|}} \]
has the associated volume form \(\Omega_{\tilde{g}} = \Omega \).

Finally, we get the following result.

Theorem 1. Let 3-web \(W_3 (\omega_1, w_2, \omega_3) \) be regular in a domain \(D \) in the conformal plane \((\mathbb{R}^2, g) \). Then the above functions \(w_{ij}, \tilde{g}_{ij} = \frac{g_{ij}}{\sqrt{\det \| g_{ij} \|}} \) that are components of 1-forms \(\omega_1, \omega_2 \) and the metric tensor \(\tilde{g} \) in the invariant coordinates \(I_1, I_2 \), are conformal invariants of plane 3-webs.

Moreover, any two regular 3-webs are conformly equivalent if and only if the corresponding functions \(w_{ij} \) and \(\tilde{g}_{ij} \) coincide.