Deformational symmetries of functions with isolated singularities on the Mobius band

Iryna Kuznietsova

(Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine) *E-mail:* kuznietsova@imath.kiev.ua

Sergiy Maksymenko (Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine) *E-mail:* maks@imath.kiev.ua

Let M be a smooth compact 2-dimensional manifold which have a non-empty boundary, and P be either a real line or a circle. Denote by D(M, Y) the group of diffeomorphisms of M fixed on a closed subset $Y \subset M$. There is a natural right action of the group D(M, Y) on the space of smooth functions $C^{\infty}(M, \mathbb{R})$ defined by the following rule: $(h, f) \mapsto f \circ h$, where $h \in D(M, Y)$, $f \in C^{\infty}(M, \mathbb{R})$.

Let

$$\mathcal{O}(f,Y) = \{ f \circ h \mid h \in \mathcal{D}(M,Y) \}$$

be the *orbit* of f under this action. Endow $C^{\infty}(M, \mathbb{R})$ with Whitney C^{∞} -topology and $\mathcal{O}(f, Y)$ with induced one.

Definition 1. Denote by $\mathcal{F}(M, P)$ the space of smooth maps $f \in C^{\infty}(M, P)$ having the following properties:

- (1) the map f takes constant values at each connected component of ∂M and has no critical points on it;
- (2) for every critical point z of f there is a local presentation $f_z \colon \mathbb{R}^2 \to \mathbb{R}$ of f near z such that f_z is a homogeneous polynomial $\mathbb{R}^2 \to \mathbb{R}$ without multiple factors.

Definition 2. Let G, H be groups, $m \in \mathbb{Z}$ and $\gamma: H \to H$ be automorphism of order 2. Define the automorphism $\phi: G^{2m} \times H^m \to G^{2m} \times H^m$ by the formula

 $\phi(g_0,\ldots,g_{2m-1},h_0,\ldots,h_{m-1}) = (g_{2m-1},g_0,\ldots,g_{2m-2},h_1,h_2,\ldots,h_{m-1},\gamma(h_0)).$

This automorphism ϕ generates homomorphism $\phi' \colon \mathbb{Z} \to G^{2m} \times H^m$. The corresponding semidirect product $G^{2m} \times H^m \rtimes_{\phi'} \mathbb{Z}$ will be denoted $(G, H) \wr_{\gamma,m} \mathbb{Z}$.

Definition 3. Let \mathcal{P} be a minimal class of groups satisfying the following conditions:

- 1) $1 \in \mathcal{P};$
- 2) if $A, B \in \mathcal{P}$, then $A \times B \in \mathcal{P}$;
- 3) if $A \in \mathcal{P}$ and $n \geq 1$, then $A \wr_n \mathbb{Z} \in \mathcal{P}$.

It was shown in [2] that if M has negative Euler characterictic, then fundamental groups of orbits of functions in $\mathcal{F}(M, P)$ are direct products of such groups for functions only on cylinders, disks and Möbius bands. Moreover, if M is either a 2-disk or a cylinder, then $\pi_1 \mathcal{O}(f, \partial M) \in \mathcal{P}$.

Theorem 4. Let M be a Möbius band and let $f \in \mathcal{F}(M, P)$. Then

$$\pi_1 \mathcal{O}(f, \partial M) \cong A \times (G, H) \wr_{\gamma, m} \mathbb{Z}, \text{ where } A, G, H \in \mathcal{P}.$$

References

- [1] Iryna Kuznietsova, Sergiy Maksymenko. Homotopy properties of smooth functions on the Möbius band, Proceedings of the International Geometry Center, vol. 12, no. 3, 2019.
- [2] Maksymenko S. I. Deformations of functions on surfaces by isotopic to the identity diffeomorphisms. *Topology and its* Applications, vol. 282, 2020.