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Umbral calculus (also called calculus of finite differences) is essentially the theory of Sheffer polyno-
mial sequences, which are characterised by the exponential form of their generating function. The class
of Sheffer sequences includes the binomial sequences and Appell sequences. After a long period when
one-dimensional umbral calculus was used for purely formal calculations, the theory became rigorous
in the 1970s due to the seminal works of G.-C. Rota, S. Roman and their co-authors. Their theory is
nowadays called the modern umbral calculus, see e.g. the monographs [4, 8]. Umbral calculus found
applications in combinatorics, theory of special functions, approximation theory, probability and sta-
tistics, topology and physics, see e.g. the survey paper [2] for a long list of references. A central object
of studies of umbral calculus is the umbral composition, which equips the set of all Sheffer sequences
with a group structure. This group is isomorphic to the Riordan group of infinite lower triangular
matrices [6, 10]. Recently, Cheon et al. [3] (see also Bacher [1]) introduced a Lie group structure on
the Riordan group and found the corresponding Lie algebra.
A lot of research has been done to extend the classical umbral calculus to the multivariate case, see

Section 4 in [2] for a list of references. However, this research had a significant drawback of being basis-
dependent. The paper [5] developed foundations of infinite-dimensional, basis-independent umbral
calculus.
In this talk, we will discuss Lie structures of the group of Sheffer polynomials over a Hilbert space.

Let
H+ ⊂ H0 ⊂ H0

be standard triple of real separable Hilbert spaces, i.e., the Hilbert space H+ is densely and contin-
uously embedded into H0 and H− is the dual of H+, while the dual paring between elements of H−
and H+ is determined by the inner product in H0. Then, for each n, we also get a standard triple

H⊙n
+ ⊂ H⊙n

0 ⊂ H⊙n
0 .

Here ⊙ denotes the symmetric tensor product. For F (n) ∈ H⊙n
− and f (n) ∈ H⊙n

+ , we denote by
⟨F (n), f (n)⟩ the dual pairing between F (n) and f (n). (For a real Hilbert space H, we define H⊙0 := R.)
A (continuous) polynomial on H− is a function p : H− → R of the form

p(ω) =
n∑

i=0

⟨ω⊙i, f (i)⟩, ω ∈ H−, f (i) ∈ H⊙i
+ , i = 0, 1, . . . , n, n ∈ N0. (1)

We denote by P(H−) the vector space of all polynomials on H−. By identifying the polynomial p(ω)
in (1) with the sequence (f (i)), we endow P(H−) with the topology of the topological direct sum of
the Hilbert spaces H⊙i

+ , i ∈ N0.
A monic polynomial sequence on H− is a continuous linear map P ∈ L(P(H−)) that satisfies

(P ⟨·⊙n, f (n)⟩)(ω) =
n∑

i=0

⟨ω⊙i, pinf
(n)⟩, (2)

where pin ∈ L(H⊙n
+ ,H⊙i

+ ) and pnn = 1. Denote by p∗in ∈ L(H⊙i
+ ,H⊙n

+ ) the adjoint (dual) operator of
pin. Then

(P ⟨·⊙n, f (n)⟩)(ω) = ⟨p(n)(ω), f (n)⟩,
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where p(n)(ω) ∈ H⊙n
− is given by p(n)(ω) :=

∑n
i=0 p

∗
inω

⊙i. Thus, p(n) : H− → H⊙n
− , and we can identify

the linear operator P from (2) with the sequence (p(n))∞n=0.
A monic polynomial sequence (p(n))∞n=0 is called a Sheffer sequence (on H−) if it has the exponential

generating function of the form
∞∑
n=0

1

n!
⟨p(n)(ω), ξ⊙n⟩ = exp

[
⟨ω,B(ξ)⟩

]
A(ξ), ω ∈ H−, ξ ∈ H+, (3)

where B(ξ) = ξ +
∑∞

k=2 bkξ
⊙k, bk ∈ L(H⊙k

+ ,H+), A(ξ) = 1 +
∑∞

k=1 akξ
⊙k, ak ∈ L(H⊙k

+ ,R), and the
equality (3) is understood as the equality of formal tensor power series in ξ, see [5]. We denote by S
the set of all Sheffer sequences on H−. We also denote by A the set of all Appell sequences, i.e., the
Sheffer sequences for which B(ξ) = ξ in (3), and we denote by B the set of all the binomial sequences,
i.e., the Sheffer sequences for which A(ξ) = 1 in (3).
Since elements of S were defined through continuous linear operators in P(H−), one can ask a

natural question whether a product of two such operators yields a Sheffer sequence. The answer to
this question is positive, and furthermore the set S, equipped with this product, becomes a group. Note
that the neutral element in this group is the identity operator, equivalently the monomial sequence
p(n)(ω) = ω⊙n. Furthermore, both A and B are subgroups S, A is a normal subgroup of S, and the
Sheffer group S is a semidirect product of the Appell group A and the binomial group B.
In the talk, we will discuss the following results:

• We will show that S, A and B can be described as infinite-dimensional Lie groups, in the sense
of Milnor [7], see also [9, Chapter 3].

• We will find the explicit form of the Lie algebra of each of these Lie groups, and we will find
a Lie bracket on them.

• We will conclude that the Sheffer group is constructed from two basic operations: gradient of
polynomials on H− and multiplication by ω.

This is joint result with Dmitri Finkelshtein (Swansea University) and Maria João Oliveira (Uni-
versidade Aberta, Lisbon).
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