Samir Marouani (118 route de Narbonne, 31062 Toulouse, France)

E-mail: almarouanisamir@gmail.com

Definition 1. Let X be a compact complex manifold with $\dim_{\mathbb{C}} X = n$, and ω be a metric on X: be a C^{∞} positive definite (1, 1)-form on X.

- i) ω is Kähler, if $d\omega = 0$.
- *ii*) ω is *balanced*, if $d\omega^{n-1} = 0$.
- *iii*) ω is *Gauduchon*, if $\bar{\partial}\partial\omega^{n-1} = 0$, such a metric always exists on a compact complex manifold.
- *iv*) ω is **SKT** (or pluriclosed), if $\partial \bar{\partial} \omega = 0$

Let $\pi_X : \widetilde{X} \longrightarrow X$ be the universal cover of X and $\widetilde{\omega} = \pi_X^* \omega$ be the Hermitian metric on \widetilde{X} that is the lift of ω . Recall that a C^{∞} k-form α on X is said to be \widetilde{d} (bounded) with respect to ω if $\pi_X^* \alpha = d\beta$ on \widetilde{X} for some C^{∞} (k-1)-form β on \widetilde{X} that is bounded w.r.t. $\widetilde{\omega}$. (See [1] and [2]). In general, we propose the following definition which generalizes that of \widetilde{d} -bounded of a differential form.

Definition 2. a C^{∞} k-form ϕ on X is said to be $(\overline{\partial + \overline{\partial}})$ -bounded with respect to ω if $\pi_X^* \phi = \partial \alpha + \overline{\partial} \beta$ on \widetilde{X} for some C^{∞} (k-1)-forms α and β on \widetilde{X} that are bounded w.r.t. $\widetilde{\omega}$.

M. Gromov introduced in one of his seminal papers [1] the notion of Kähler hyperbolicity for a compact Kähler manifold X. The manifold X is called Kähler hyperbolic if X admits a Kähler metric ω whose lift $\tilde{\omega}$ to the universal cover \tilde{X} of X can be expressed as

$$\widetilde{\omega} = d\alpha$$

for a *bounded* 1-form α on \tilde{X} . As pointed out by Gromov, it is not hard to see that the Kähler hyperbolicity implies the Kobayashi hyperbolicity.

The Kähler hyperbolicity is generalized in [2] to what we call **balanced hyperbolicity**. This is done by replacing the Kähler metric in the Kähler hyperbolicity by a *balanced metric*. Meanwhile, a compact complex *n*-dimensional manifold X is said to be balanced hyperbolic if it carries a balanced metric ω such that ω^{n-1} is \tilde{d} -bounded. The Brody hyperbolicity is replaced by what we call **divisorial hyperbolicity**. A compact complex manifold X is called *divisorially hyperbolic* if there exists no non-trivial holomorphic map from \mathbb{C}^{n-1} to X satisfying certain subexponential volume growth condition.

We introduce the following

Definition 3. Let X be a compact complex manifold with $\dim_{\mathbb{C}} X = n$. A Hermitian metric ω on X is said to be

- (1) **SKT hyperbolic** if ω is SKT and $(\partial + \overline{\partial})$ bounded with respect to ω . The manifold X is said to be SKT hyperbolic if it carries a *SKT hyperbolic metric*.
- (2) **Gauduchon hyperbolic** if ω^{n-1} is $(\partial + \bar{\partial})$ bounded with respect to ω . The manifold X is said to be Gauduchon hyperbolic if it carries a *Gauduchon hyperbolic metric*.

Lemma 4. The following implication holds:

X is Kähler hyperbolic $\implies X$ is SKT hyperbolic

X is balanced hyperbolic $\implies X$ is Gauduchon hyperbolic

The following results are taken from [3]

Theorem 5. Every SKT hyperbolic compact complex manifold is Kobayashi hyperbolic.

Remark 6. An immediate observation is that, since a *SKT hyperbolic* manifold X contains no rational curves, then by Mori's cone theorem we get K_X is nef.

Theorem 7. Every Gauduchon hyperbolic compact complex manifold is divisorially hyperbolic.

Theorem 8. Let X be a compact complex **SKT hyperbolic** manifold with $\dim_{\mathbb{C}} X = n$. Let $\pi : \widetilde{X} \longrightarrow X$ be the universal cover of X and $\widetilde{\omega} := \pi^* \omega$ the lift to \widetilde{X} of a SKT hyperbolic metric ω on X. Fix a primitive $L^2_{\widetilde{\omega}}$ -form ϕ on \widetilde{X} of bidegree (p,q) with p+q=n-1 such that

$$\partial \phi = 0, \qquad \bar{\partial} \phi = 0.$$

Then $\phi = 0$.

Corollary 9. Let ϕ be a (n-1,0)-form (respectively a (0,n-1)-form) on a connected complete manifold $(\widetilde{X},\widetilde{\omega})$ such that

 $\phi \in L^2(\widetilde{X}), \qquad \partial \phi = 0, \qquad \overline{\partial} \phi = 0.$

If $\widetilde{\omega} = \partial \alpha + \overline{\partial} \beta$ where α and β are bounded 1-forms on \widetilde{X} , then

 $\phi = 0.$

Theorem 10. Let (X, ω) be a complete Kähler manifold of dimension 2n and $\omega = \partial \alpha + \bar{\partial}\beta$ where α and β are respectively a bounded (0,1) and (1,0) forms on X. Then every L_2 -form Ψ on X of degree $p \neq m$ satisfies the inequality

$$\left\langle \psi, \Delta \psi \right\rangle \geq \lambda_0^2 \left\langle \psi, \psi \right
angle$$

where λ_0 is a strictly positive constant which depends only on $n = \dim X$, α and β .

Corollary 11. Let $(\widetilde{X}, \widetilde{\omega})$ be a connected complete Kähler manifold. If $\widetilde{\omega} = \partial \alpha + \overline{\partial} \beta$ where α and β are bounded 1-forms on \widetilde{X} , then $\mathcal{H}^p_{\Delta_{\widetilde{\omega}}}(\widetilde{X}, \mathbb{C}) = 0$, unless p = n.

This is a new conjecture.

Conjecture 12. If a compact complex manifold admits a balanced hyperbolic metric and an SKT hyperbolic metric, then it admit a Kähler hyperbolic metric.

References

- [1] M. Gromov Kähler Hyperbolicity and L² Hodge Theory J. Diff. Geom. 33 (1991), 263-292.
- [2] S Marouani, D Popovici. Balanced Hyperbolic and Divisorially Hyperbolic Compact Complex Manifolds arXiv e-print CV 2107.08972v2, to appear in Mathematical Research Letters.
- [3] S Marouani. SKT Hyperbolic and Gauduchon Hyperbolic Compact Complex Manifolds. arXiv preprint arXiv:2305.08122.