Degree theory for proper C^1 Fredholm mappings with applications to boundary value problems on the half line

Jason R. Morris

(Department of Mathematics, SUNY Brockport, Brockport NY 14420, USA) *E-mail:* jrmorris@brockport.edu

We overview elements of the definition and several properties, of a degree theory for proper C^1 Fredholm mappings of index zero [1, 2]. We establish sufficient conditions for solvability of an ODE system $\dot{v} + g(t, w) = f_1(t)$, $\dot{w} + h(t, v) = f_2(t)$ under various boundary conditions on the half line. Note that the unbounded domain prevents the use of Leray-Schauder degree. We establish sufficient conditions for solvability of a semilinear parabolic PDE $u_t - A(t)u + F(t, x, u) = f(t, x)$, once again with conditions at t = 0 and as $t \to \infty$. These applications illustrate methods to meet the conditions associated with the degree theory, including smoothness, properness, the Fredholm property, and the establishment of *a priori* bounds. (Note: this is an exposition of work previously published [3, 4].)

References

- P.M Fitzpatrick, J. Pejsachowicz and P.J. Rabier. The degree of proper C² Fredholm mappings. Journal f
 ür die Reine und Angewandte Mathematik, 427: 1–33, 1992.
- J. Pejsachowicz and P.J. Rabier. Degree theory for C¹ Fredholm mappings of index 0. Journal d'Analyse Mathématique, 76: 289–319, 1998.
- [3] J.R. Morris. Nonautonomous semilinear parabolic equations on an infinite interval. Dynamics of Partial Differential Equations, 3(3): 209–233, 2006.
- [4] J.R. Morris. Boundary-value problems for nonautonomous nonlinear systems on the half-line. Electronic Journal of Differential Equations, 2011(135): 1–15, 2011.