Fermat-Torricelli sets of finite sets of points in Euclidean plane

Illia Ovtsynov
(Taras Shevchenko National University of Kyiv, Kyiv, Ukraine)
E-mail: iliarkov@gmail.com

Definition $1(\|8\|)$. Let (X, ρ) be a metric space and $x_{1}, \ldots, x_{n} \in X$ be a finite collection of points in X. A point $\bar{x} \in X$ is called a Fermat-Torricelli point for x_{1}, \ldots, x_{n} whenever for each $x \in X$ the following inequality holds true:

$$
\sum_{k=1}^{n} \rho\left(\bar{x}, x_{k}\right) \leq \sum_{k=1}^{n} \rho\left(x, x_{k}\right) .
$$

Definition 2. Fermat-Torricelli set for fixed points $\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of all Fermat-Torricelli points for this collection of points.

In the case when $X=\mathbb{R}^{n}$ is the Euclidean space with the standard metric, then for every finite collection of points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{n}$ the set of its Fermat-Torricelli points is non-empty, convex and compact. The problem of finding the Fermat-Torricelli set is called the Fermat-Torricelli problem.

This problem has both geometric and probabilistic interpretation. We can describe discrete probabilistic space $\Omega=\left\{x_{1}, \ldots, x_{n}\right\}$ with a probabilistic measure P on it, so that $\forall k \in\{1, \ldots, n\}: P\left(x_{k}\right)=$ $\frac{1}{n}$. If for any $x_{0} \in(X, \rho)$ we define a random variable $\xi_{x_{0}}(x):=\rho\left(x, x_{0}\right), x \in \Omega$, then FermatTorricelli set is the set of those $x_{0} \in(X, \rho)$, for which random variable $\xi_{x_{0}}$ has the least mathematical expectation.

Theorem 3. Let A be the Fermat-Torricelli set for a collection $\left\{x_{1}, \ldots, x_{n}\right\}$, and B be the FermatTorricelli set for a collection $\left\{y_{1}, \ldots, y_{k}\right\}$ in Euclidean metric space $\left(\mathbb{R}^{m}, \rho\right)$ with standard metric. Assume that all points $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}$ are mutually distinct. Then if $A \bigcap B \neq \varnothing$, then $A \bigcap B$ is the Fermat-Torricelli set for $\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right\}$.

Since now we will name Euclidean metric space $\left(\mathbb{R}^{2}, \rho\right)$ with standard metric merely Euclidean plane.

Corollary 4. If mutually distinct points $x_{1}, x_{2}, x_{3}, x_{4}$ in the Euclidean plane are vertices of a convex quadrilateral, then the point of intersection of its diagonals is a unique Fermat-Torricelli point for $x_{1}, x_{2}, x_{3}, x_{4}$.

Corollary 5. Let $x_{1}, x_{2}, x_{3}, x_{4}$ be mutually distinct points in the Euclidean plane laying on the same line in the given order. Then Fermat-Torricelli set of these points is the following set

$$
A=\left\{\alpha x_{2}+(1-\alpha) x_{3} \mid \alpha \in[0 ; 1]\right\} .
$$

Corollary 6. Let x_{1}, x_{2}, x_{3} be the vertices of some triangle in the Euclidean plane, and x_{4} be some other point which lays on the side of triangle between x_{2} and x_{3}. Then x_{4} is a unique Fermat-Torricelli point of $x_{1}, x_{2}, x_{3}, x_{4}$.

Corollary 7. Let $A_{1} A_{2} \ldots A_{n}$ be a regular polygon with an even number of vertices. Then its center of gravity is a unique Fermat-Torricelli point of its vertices.

Theorem 8. Let $x_{1}, \ldots, x_{n}, n \geq 3$ be distinct points in the Euclidean plane. Then the following statements hold.

1) If x_{1}, \ldots, x_{n} lay on the same line in the given order and n is any even number, then the set

$$
A:=\left\{x \in X \left\lvert\, x=\alpha x_{\frac{n}{2}}+(1-\alpha) x_{\frac{n}{2}+1}\right., \alpha \in[0 ; 1]\right\}
$$

is a Fermat-Torricelli set for them.
2) If x_{1}, \ldots, x_{n} lay on the same line in the given order and n is an odd number, then the point $x_{\frac{n-1}{2}+1}$ is a Fermat-Torricelli set for them.
3) If x_{1}, \ldots, x_{n} do not lay on the same line, then their Fermat-Torricelli point is unique.

Lemma 9. There is a unique point inside of triangle from which every side of triangle is visible under angle 120° if and only if every angle of this triangle is less than 120°.

Different sources name this point in different ways: Fermat point, Torricelli point, and even Steiner point [8]. We will define it as Steiner point for respective triangle.

Theorem 10 ([8]). Let x_{1}, x_{2}, x_{3} be vertices of triangle in Euclidean plane every angle of which is less than 120°. Then the Steiner point for this triangle is a unique Fermat-Torricelli point for x_{1}, x_{2}, x_{3}.

Theorem 11 ([8]). Let x_{1}, x_{2}, x_{3} be vertices of triangle in Euclidean plane one of whose angles is not less than 120°. Then the vertice, whose angle of triangle is not less than 120°, is a unique Fermat-Torricelli point of its vertices.

References

[1] L. Dalla, "A note on the Fermat-Torricelli point of a d-simplex," J. Geom., vol. 70, no. 1-2, pp. 38-43, 2001.
[2] A. N. Zachos, "An analytical solution of the weighted Fermat-Torricelli problem on the unit sphere," 2014.
[3] A. Zachos and G. Zouzoulas, "The weighted Fermat-Torricelli problem for tetrahedra and an "inverse" problem," Journal of Mathematical Analysis and Applications, vol. 353, pp. 114-120, May 2009.
[4] F. Plastria, "Four-point Fermat location problems revisited. New proofs and extensions of old results," IMA Journal of Management Mathematics, vol. 17, pp. 387-396, Oct. 2006.
[5] S. S. Dragomir, D. Comănescu, and E. Kikianty, "Torricellian points in normed linear spaces," J. Inequal. Appl., pp. 2013:258, 15, 2013.
[6] S. D. Nguyen, "Constrained Fermat-Torricelli-Weber Problem in real Hilbert Spaces," 2018.
[7] J. Sekino, " n-ellipses and the minimum distance sum problem," Amer. Math. Monthly, vol. 106, no. 3, pp. 193-202, 1999.
[8] V. Boltyanski, H. Martini, and V. Soltan, Geometric Methods and Optimization Problems. Springer US, 1999.

