SEVERAL FORMS OF THE GEOMETRIC LUSTERNIK-SCHNIREL'MANN CATEGORY

James F. Peters, Fariha N. Peu & Juwairiah Zia

(Univ. of Manitoba, ECE Dept., Winnipeg, MB, R3T 5V6, Canada & Adiyaman University, Math. Dept., 02040 Adiyaman, Turkey,)

E-mail: james.peters3@umanitoba.ca,[peuf,ziaj1]@myumanitoba.ca

FIGURE 1. Fig. 1.1 from Theorem 1.6 & Fig. 1.2 from Corollary 1.8.

This paper introduces results for several forms of the geometric Lusternik-Schirel'mann categories (LS gcat).

1. Geometric Lusternik-Schnirel'mann Category

Let $h: I \to K$ be a continuous map called **homotopy** (briefly, **path** in a space K. A **homotopic** class for different maps h (denoted by $[h] = \{h_0, \ldots, h_i, \ldots, h_{n-1[n]}\}$ with $[n] = \mod n \in \mathbb{Z}^+$) is a collection of $h_{i[n]}$ homotopic maps that have the same endpoints, namely, $h_i(0)$ and $h_i(1)$. The geometric realization of [n] (denoted by |[h]|) is a collection of sinusoidal curves, each being the geometric realization of a path h.

Definition 1.1 (Geometric LS Category). ¹ For a topological space X, the geometric category of X is the minimal covering of X with contractible open subsets of X.

Lemma 1.2. Let h be a homotopic sinusoidal path. The geometric realization |h| is a planar sinusoidal curve.

Lemma 1.3. Let [h] be a collection of homotopic paths with common endpoints. The geometric realization |[h]| is a collection space filling planar curves.

Lemma 1.4. Let $\triangle pqr$ be a planar filled triangle in a space K, geometric realization |[h]| such that each path h has endpoints $h(0), h(1) \in \mathbf{K} \setminus \triangle pqr$. Then $\liminf_{i \to \infty} h_i \in [h] \supseteq \triangle pqr$.

Lemma 1.5. Let h be a homotopic path in space K.

- 1^{o} Every path **h** is contractible.
- 2° There exists a minimal |[h]| in space K with $h_i \in [h]$ with the same boundary endpoints $h(0), h(1) \in \partial \triangle pqr$ such that |[h]| covers triangle $\triangle pqr \subset K$.
- 3^o Every planar triangle in K has a minimal covering |[h]|.

Theorem 1.6. There exists $gcat(|[h]| \in 2^K)$ such that $min|[h]| \supseteq \triangle pqr \in 2^K$.

¹ L. Montejano, Lusternik schirel'mann category: a geometric approach, Banach Cent. Publ. 18 (1986), 117–129.

Example 1.7. From Theorem 1.6, the triangle $\triangle pqr$ in Fig. 1 has a |[h]| minimal covering, which is a gcat(T).

A cluster of triangles $\{ \Delta pqr \}$ in a Euclidean space K is a collection of triangles attached to a common vertex. From Theorem 1.6, we have

Corollary 1.8. Let $|\{[h]\}| \subset K$ such that each $h \in \{[h]\} \subset K \setminus \{\triangle pqr\}$ has the same endpoints. Then $\exists gcat(|\{[h]\}|): min |\{[h]\}| \supseteq \{\triangle pqr\} \in 2^{K}$.

FIGURE 2. Delaunay Triangle cluster minimally covering bus in video frame foreground.

Example 1.9. From Corollary 1.8, there is a $gcat(|\{[h]\}|)$ such that $gcat(|\{[h]\}|)$ is a minimal covering of the triangle cluster $\{ \triangle pqr \} \cap p$, which is a bounded region in Fig. 1.

2. MINIMAL VIDEO FRAME FOREGROUND OBJECT COVERING

Delaunay triangulations² represent pieces of a continuous space in form of triangles with edges attached to selected vertices³.

Theorem 2.1. Let \mathcal{TC} be a Delaunay triangle cluster with k triangles minimally covering a planar bounded region $E \in 2^{\mathbb{R}^2}$. Then $gcat(\mathcal{TC}) = k$.

Example 2.2. With restrictions on the selection of vertices (e.g., centroids), we obtain a minimal cluster \mathcal{TC} of k triangles covering a bus, which is a bounded region in a Delauany triangulation of the video frame foreground in Fig. 2. Hence, from Theorem 2.1, $gcat(\mathcal{TC}) = k$.

²B. Delaunay, Sur la sphère vide. a la mémoire de georges voronoï, Izvestia Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk 7 (1934), 793–800.

³J.F. Peters, Proximal Voronoï regions, convex polygons, & Leader uniform topology, Advances in Math.: Sci. J. 4 (2015), no. 1, 1–5.