Convex bodies of constant width with exponential illumination number

Andrii Arman
(Department of Mathematics, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada)
E-mail: andrewOarman@gmail.com

Andriy Bondarenko
(Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491
Trondheim, Norway)
E-mail: andriybond@gmail.com
Andriy Prymak
(Department of Mathematics, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada)
E-mail: prymak@gmail.com
Borsuk's number $f(n)$ is the smallest integer such that any set of diameter 1 in the n-dimensional Euclidean space can be covered by $f(n)$ sets of smaller diameter. Currently best known asymptotic upper bound $f(n) \leq(\sqrt{3 / 2}+o(1))^{n}$ was obtained by Shramm (1988) and by Bourgain and Lindenstrauss (1989) using different approaches. Bourgain and Lindenstrauss estimated the minimal number $g(n)$ of open balls of diameter 1 needed to cover a set of diameter 1 and showed $1.0645^{n} \leq g(n) \leq(\sqrt{3 / 2}+o(1))^{n}$. On the other hand, Schramm used the connection $f(n) \leq h(n)$, where $h(n)$ is the illumination number of n-dimensional convex bodies of constant width, and showed $h(n) \leq(\sqrt{3 / 2}+o(1))^{n}$. The best known asymptotic lower bound on $h(n)$ is subexponential and is the same as for $f(n)$, namely $h(n) \geq f(n) \geq 1.2255^{\sqrt{n}}$ for large n established by Raigorodskii (1999). In 2015 Kalai asked if an exponential lower bound on $h(n)$ can be proved.

We show $h(n) \geq(\cos (\pi / 14)+o(1))^{-n}$ by constructing the corresponding n-dimensional bodies of constant width, which answers Kalai's question in the affirmative. The construction is based on a geometric argument combined with a probabilistic lemma establishing the existence of a suitable covering of the unit sphere by equal spherical caps having sufficiently separated centers. The lemma also allows to improve the lower bound of Bourgain and Lindenstrauss to $g(n) \geq(2 / \sqrt{3}+o(1))^{n} \approx$ 1.1547^{n}.

