FUZZY METRIZATION OF SPACES OF *****-MEASURES

Aleksandr Savchenko

(Kherson State University, Universyteska st., 27, Kherson, 73003, Ukraine) *E-mail:* savchenko.o.g@ukr.net

In [1], a fuzzy metrization of spaces if idempotent measures is constructed. The idempotent measures are known to be counterparts of the probability measures in the idempotent mathematics (see [4] for detailed exposition of topological aspects of idempotent measures).

Definition 1. A binary operation $*: [0,1] \times [0,1] \rightarrow [0,1]$ is a *continuous t-norm* if it satisfies the following conditions.

- (1) * is associative and commutative,
- (2) * is continuous,
- (3) a * 1 = a for all $a \in [0, 1]$,
- (4) $a * b \le c * d$ whenever $a \le c$ and $b \le d$, for each $a, b, c, d \in [0, 1]$.

Definition 2. A 3-tuple (X, M, *) is said to be a *fuzzy metric space* [2] if X is an arbitrary set, * is a continuous t-norm and M is a fuzzy set on $X \times X \times (0, \infty)$ satisfying the following conditions for all $x, y, z \in X$ and $s, t \in (0, \infty)$:

- (1) M(x, y, t) > 0;
- (2) M(x, y, t) = 1 if and only if x = y;
- (3) M(x, y, t) = M(y, x, t);
- (4) $M(x, y, t) * M(y, z, s) \le M(x, z, t + s);$
- (5) the function $M(x, y, \cdot) \colon (0, \infty) \to [0, 1]$ is continuous.

If (X, M, *) is a fuzzy metric space, (M, *) will be called a fuzzy metric on X.

Let \star be a triangular norm. A functional $\mu: C(X, [0, 1]) \to [0, 1]$ is said to be an \star -measure if the following holds (c_X is the constant function with value c):

- (1) $\mu(c_X) = c$ for all $c \in [0, 1]$;
- (2) $\mu(\varphi \oplus \psi) = \mu(\varphi) \oplus \mu(\psi);$
- (3) $\mu(\lambda \star \varphi) = \lambda \star \mu(\varphi).$

(Here, \oplus denotes the max operation.)

The spaces $I^{\star}(X)$ of \star -measures on compact Hausdorff spaces X are endowed with the weak^{*} topology [3].

The aim of the talk is to provide a fuzzy metrization of the spaces $I^{\star}(X)$ on fuzzy metric spaces (X, M, *). To this end, we identify the spaces $I^{\star}(X)$ with subsets of the hyperspace of $X \times [0, 1]$. Our results are analogs of those in [1].

References

- V. Brydun, A. Savchenko, M. Zarichnyi, Fuzzy metrization of the spaces of idempotent measures, European Journal of Mathematics. 2020. V. 6. N 1. 98–109. DOI 10.1007/s40879-019-00341-8.
- [2] A. George, P. Veeramani, On some result in fuzzy metric space. Fuzzy Sets Syst. 64, 395-399, (1994)
- [3] Kh. Sukhorukova, Spaces of non-additive measures generated by triangular norms, Preprint.
- [4] M. Zarichnyi, Spaces and mappings of idempotent measures. Izvestiya: Math. 2010, 74 (3), 481 499. doi: 10.4213/im2785