Equiaffine immersions of codimension two with flat connection

Olena Shugailo

(V. N. Karazin Kharkiv National University, Kharkiv, Ukraine) *E-mail:* shugailo@karazin.ua

We consider the affine immersions by K. Nomizu, T. Sasaki [1], namely $f: (M^n, \nabla) \to \mathbb{R}^{n+2}$. For a transversal frame ξ_1, ξ_2 and tangent vector fields X, Y we have the affine analogues of Gauss and Weingarten decompositions, namely

$$D_X f_*(Y) = f_*(\nabla_X Y) + h^{\alpha}(X, Y)\xi_{\alpha},$$
$$D_X \xi_{\alpha} = -f_*(S_{\alpha} X) + \tau^{\beta}_{\alpha}(X)\xi_{\beta},$$

where h^{α} are components of the affine fundamental form, S_{α} are shape operators, τ_{α}^{β} are forms of transversal connection (with respect to ξ_1 , ξ_2).

The Weingarten mapping $S_x : Q_x \times T_x(M^n) \to T_x(M^n)$ is defined [2] as follows: $(\xi, X) \mapsto S_{\xi}X$ at every point $x \in M^n$ (where $T_x(M^n)$ and Q_x are tangent and transversal distributions.) For an affine immersion $f : (M^n, \nabla) \to \mathbb{R}^{n+2}$ with a transversal frame $\{\xi_1, \xi_2\}$, an induced volume

For an affine immersion $f: (M^n, \nabla) \to \mathbb{R}^{n+2}$ with a transversal frame $\{\xi_1, \xi_2\}$, an *induced volume* element θ on M^n is defined [1, 3, 4] as follows:

$$\theta(X_1,\ldots,X_n) = \det(f_*(X_1),\ldots,f_*(X_n),\xi_1,\xi_2).$$

The transversal distribution Q with frame $\{\xi_1, \xi_2\}$ is called *equiaffine* if $\nabla_X \theta = 0$ for all $X \in T_x(M^n), x \in M^n$. For two-codimension affine immersion this condition is equivalent [4] to

$$\tau_1^1(X) + \tau_2^2(X) \equiv 0.$$

With an equiaffine transversal distribution Q we have an equiaffine structure (∇, θ) on M^n .

We will consider an affine immersion $f : (M^n, \nabla) \to \mathbb{R}^{n+2}$ with flat connection ∇ and equiaffine transversal distribution. Two-codimensional affine surfaces with different additional properties have been studied by many authors. Flat affine surfaces in \mathbb{R}^4 with flat normal connection were studied in [3]. The description of a parallel affine immersions $(M^n, \nabla) \to \mathbb{R}^{n+2}$ with flat connection in dependence on the rank of the Weingarten mapping were given in [2].

Let us remind that in general case (codimension k) the kernel and the image of the Weingarten mapping is defined by ker $S = \bigcap_{\alpha=1}^{k} \ker S_{\alpha}$, im $S = \bigcup_{\alpha=1}^{k} \operatorname{im} S_{\alpha}$. We say that Weingarten mapping is p-dimensional if rank $S := \dim \operatorname{im} S = p$. It was proved [6] that for the immersion $f : (M^n, \nabla) \to \mathbb{R}^{n+k}$ (for k < n) with maximal pointwise codimension and flat connection ∇ the following relations hold true:

1) dim ker $S \ge n - k$; 2) ker $h \subseteq \ker S$; 3) dim im $S \le k$;

4) if dim im S = k, then dim ker S = n - k and ker $h = \ker S$.

It was also proved [6] that the distribution S of the kernels of Weingarten mapping is integrable on M^n and there exists a transversal distribution which is stationary along the leaves of the foliation \mathcal{FS} .

Since in the case of codimension two we have dim in $S \leq 2$, dim ker $S \geq n-2$, so we have only three possible values for the dimension of im S, namely 0, 1, 2. The most studied are affine immersions with zero and two-dimensional Weingarten mapping.

It is well known that an affine immersion with zero Weingarten mapping $(S \equiv 0)$ has a flat connection and it is affinely equivalent to the graph of certain smooth map $F: M^n \to \mathbb{R}^2$ (see for example [5, 1, 6]), i. e.

$$f: (u^1, \ldots, u^n) \mapsto (u^1, \ldots, u^n, f^1(u^1, \ldots, u^n), f^2(u^1, \ldots, u^n)).$$

Obviously, a graph immersion is equiaffine.

According to the properties which were discussed in [6], in case dim im S = 2 we obtain ker $h = \ker S$ and dim ker h = n - 2. Therefore such a submanifold is a submanifold of rank two (by the rank of Gaussian (Grassmann) mapping) [7]. Rank-two submanifold is a ruled submanifold with (n - 2)dimensional rulings over a two-dimensional base. In case this submanifold is a cylinder, its connection is determined by the connection of the cylinder base. In the general case the problem on its connection remains open.

We obtain a parametrization of a submanifold with one-dimensional Weingarten mapping and given properties. Such a submanifold is a peculiar "mix" of a graph and a ruled submanifold.

The main result. Let $f : (M^n, \nabla) \to \mathbb{R}^{n+2}$ be an affine immersion with rank two affine fundamental form, equiaffine structure, flat connection ∇ , one-dimensional Weingarten then there exists three types of its parametrization:

(i)
$$\vec{r} = g(u^1, \dots, u^n)\vec{a}_1 + \int \vec{\varphi}(u^1)du^1 + \sum_{i=2}^n u^i \vec{a}_i;$$

(ii) $\vec{r} = (g(u^2, \dots, u^n) + u^1)\vec{a} + \int v(u^1)\vec{\eta}(u^1)du^1 + \sum_{i=2}^n u^i \int \lambda_i(u^1)\vec{\eta}(u^1)du^1;$
(iii) $\vec{r} = (g(u^2, \dots, u^n) + u^1)\vec{\rho}(u^1) + \int (v(u^1) - u^1)\frac{d\vec{\rho}(u^1)}{du^1}du^1 + \sum_{i=2}^n u^i \int \lambda_i(u^1)\frac{d\vec{\rho}(u^1)}{du^1}du^1.$

References

- [1] Nomizu K., Sasaki T. Affine differential geometry. Cambridge University Press, 1994.
- [2] Shugailo E. A. Parallel affine immersions $M^n \to \mathbb{R}^{n+2}$ with flat connection. Ukr. Math. J., 65(9): 1426–1445, 2014.
- [3] Magid M., Vrancken L. Flat affine surfaces in \mathbb{R}^4 with flat normal connection. Geometriae Dedicata, 81 : 19–31, 2000
- [4] Nomizu K., Vrancken L. A new equiaffine theory for surfaces in \mathbb{R}^4 . International J. Math., 4: 127–165, 1993.
- [5] Nomizu K., Pinkall U. On the Geometry of Affine Immersions. Mathematisce Zeitschrift, 195: 165-178, 1987.
- [6] Shugailo O.O. On affine immersions with flat connections. Journal of Math. Physics, Analysis, Geometry, 8(1): 90–105, 2012.
- [7] Shugailo O. O. Affine Submanifolds of Rank Two. Journal of Math. Physics, Analysis, Geometry, 9(2): 227-238, 2013.