Normal subgroups of iterated wreath products of symmetric groups and Alternating with symmetric groups

R．Skuratovskii
（Kyiv，National Aviation University，Ukraine）
E－mail：ruslcomp＠gmail．com，ruslan．skuratovskii＠nau．edu．ua

In this research we continue our previous investigation of wreath product normal structure［1］．
The lattice of normal subgroups and their properties for finite iterated wreath products $S_{n_{1}} 2 \ldots 2 S_{n_{m}}$ ， $n, m \in \mathbb{N}$ are found．Special classes of normal subgroups and their orders and generators are found． Further，the monolith of these wreath products is investigated by us．

Let $k(\pi)$ be the number of cycles in decomposition of permutation π of degree n ．
The number $n-k(\pi)$ is denoted by $\operatorname{dec}(\pi)$ ，and is called a decrement［2］of permutation π ．
As well known［2］the minimal number of transpositions in factorization of a permutation π on transpositions is happen to be equal to $\operatorname{dec}(\pi)$ ．We set $\operatorname{dec}(e)=0$ ．Therefore the decrement of n－cycle is $n-1$ ．

If $\pi_{1}, \pi_{2} \in S_{n}$ ，then the following formula holds：

$$
\begin{equation*}
\operatorname{dec}\left(\pi_{1} \cdot \pi_{2}\right)=\operatorname{dec}\left(\pi_{1}\right)+\operatorname{dec}\left(\pi_{2}\right)-2 m, m \in \mathbf{N} \tag{1}
\end{equation*}
$$

where m is number of joint simplifying transpositions in π_{1} and π_{2} ．
The trivial subgroup of S_{n} we denote by E ．
Definition 1．The set of elements from $S_{n} 2 S_{n}, n \geqslant 5$ or $n=3$ of the tableaux form：$[e]_{1},\left[a_{1}, a_{2}, \ldots, a_{n}\right]_{2}$ ， satisfying the following condition

$$
\begin{equation*}
\sum_{i=1}^{n} \operatorname{dec}\left(\left[a_{i}\right]_{2}\right)=2 k, k \in \mathbb{N}, \tag{2}
\end{equation*}
$$

we will call set of type $\widetilde{A}^{(2)}$ and denote this set by $E \imath \widetilde{A}_{n}$ ．For brevity of notation this subgroup be also denoted by $\widetilde{A}_{n}^{(2)}$ ．It follows directly from the definition that the set of these elements sup－ plemented by the operation of multiplication in the subdirect product，coincides with the group $E \rtimes(\underbrace{S_{n} \boxtimes S_{n} \boxtimes S_{n} \ldots \boxtimes S_{n}}_{n})$ ，where subdirect product satisfies to condition（2）．

We remind that the intersection of all non－trivial normal subgroups $\operatorname{Mon}(G)$ of G is called the monolith of a group G ．

Proposition 2．Elements of first type form the subgroup e $2 A_{n}$ ．This subgroup is the monolith of S_{n} 乙 S_{n} ．

Now we can recursively construct easiest and elegant subgroup E 亿 $\widetilde{A}_{n}^{(2)}$ of S_{n} 乙 S_{n} 亿 S_{n} ．
Definition 3．The subgroup $E \imath \widetilde{A}_{n}^{(2)}$ be denoted by $\widetilde{A}_{n}^{(3)}$ ．
The order of E 亿 $\widetilde{A}_{n}^{(2)}$ is $(n!)^{3 n}: 2^{3}$ ．Furthermore we prove that $E \backslash \widetilde{A}_{n}^{(2)} \triangleleft S_{n} \backslash S_{n} \backslash S_{n}$ ．
Let the set of elements from $S_{n} \backslash S_{n} \backslash S_{n}, n \geqslant 3$ of the form：

$$
[e]_{1},[e, e, \ldots, e]_{2},\left[a_{1}, a_{2}, \ldots, a_{n^{2}}\right]_{3}
$$

satisfying the following condition

$$
\begin{equation*}
\sum_{i=1}^{n^{2}} \operatorname{dec}\left(\left[a_{i}\right]_{3}\right)=2 k, k \in \mathbb{N} \tag{3}
\end{equation*}
$$

be denoted by $\widetilde{A}_{n^{2}}^{(3)}$ ．
Proposition 4．The set of elements of type $\widetilde{A}_{n^{2}}^{(3)}$ forms a subgroup in $S_{n} 乙 S_{n} \imath S_{n}$ ．Moreover $\widetilde{A}_{n^{2}}^{(3)} \triangleleft$ $S_{n} \backslash S_{n}$ \ S_{n} ．
Remark 5．We note that $\widetilde{A}_{n}^{(3)}<\widetilde{A}_{n^{2}}^{(3)}$ ．The order of $\widetilde{A}_{n^{2}}^{(3)}$ is $(n!)^{n^{2}}: 2$ ．Furthermore $\widetilde{A}_{n}^{(3)} \triangleleft S_{n} 乙 S_{n} 乙 S_{n}$ ．
Definition 6．A subgroup in $S_{n} \downarrow S_{n}$ is called $\widetilde{T_{n}}$ if it consists of：
1）elements of $E \imath A_{n}$ ，
2）elements with the tableau［3］presentation $[e]_{1},\left[\pi_{1}, \ldots, \pi_{n}\right]_{2}$ ，that $\pi_{i} \in S_{n} \backslash A_{n}$ ．
One easy can validates a correctness of this definition，i．e．that the set of such elements form a subgroup and its normality．This subgroup has structure $\tilde{T}_{n} \simeq(\underbrace{A_{n} \times A_{n} \times \cdots \times A_{n}}_{n}) \rtimes C_{2} \simeq$ $\underbrace{S_{n} \boxplus S_{n} \ldots \boxplus S_{n}}_{n}$ ，where the operation of a subdirect product \boxplus is subject to items 1）and 2）．
Definition 7．A subgroup in $S_{n} \prec S_{n} \backslash S_{n}$ is of the type $\widetilde{T}_{n^{2}}^{(3)}$ if it consists of：
1）elements of the form $E \imath E \backslash A_{n}$ ，
2）elements with the tableau $[3]$ presentation $[e]_{1},[e \ldots, e]_{2},\left[\pi_{1} \ldots, \pi_{n}, \pi_{n+1} \ldots, \pi_{n^{2}}\right]_{3}$ ，wherein $\forall i=1, \ldots, n: \pi_{i} \in S_{n} \backslash A_{n}$.

We define recursively the subgroup $\widetilde{T}_{n}^{(3)}$ having n different intervals of elements with the same parity permutations on X^{2} ．
Definition 8．The subgroup of $S_{n} \backslash S_{n} \backslash S_{n}$ having structure $E \imath \widetilde{T_{n}}$ is denoted by $\widetilde{T}_{n}^{(3)}$ ．The following isomorphism $\widetilde{T}_{n}^{(3)} \simeq \underbrace{S_{n} \boxplus S_{n} \ldots \boxplus S_{n}}_{n} \times \underbrace{S_{n} \boxplus S_{n} \ldots \boxplus S_{n}}_{n} \times \ldots \times \underbrace{S_{n} \boxplus S_{n} \ldots \boxplus S_{n}}_{n}$ ，where a tuple $S_{n} \boxplus$ $S_{n} \ldots \boxplus S_{n}$ repeats n times，holds．The operation of a subdirect product \boxplus is determined by Definition 6 ．

The operation \boxplus accords with the properties described in item 1 and 2 of Definition 6，also \boxplus is determined by automorphism in $\tilde{T}_{n} \simeq(\underbrace{A_{n} \times A_{n} \times \cdots \times A_{n}}_{n}) \rtimes C_{2}$ in this case．

Remark 9．Note that in $\widetilde{T}_{n}^{(3)}$ vertex permutation of tableau third part satisfy the condition：elements with the tableau presentation $[e]_{1},[e \ldots, e]_{2},\left[\pi_{1} \ldots, \pi_{n} ; \pi_{n+1} \ldots, \pi_{n^{2}}\right]_{3}$ ，that either all $\pi_{i} \in S_{n} \backslash A_{n}$ or all $\left[\pi_{i}\right]_{3} \in A_{n}$ for $1<i \leq n, n+1 \leq i<2 n, \ldots, n^{2}-n<i \leq n^{2}$ ．

Here are the names of（almost all）predefined theorem－like environments．
Proposition 10．The subgroup $E \backslash A_{n}$ is the monolith of $S_{n} \backslash S_{n}$ ．
We call level of $\operatorname{Aut} X^{*}$ as active if it has at least one non－trivial permutation．Denote by $A u t_{f} X^{*}$ the group of all finite automorphism of spherically homogeneous rooted tree．

Proposition 11．Let $H \triangleleft A u t_{f} X^{*}$ with depth k then H contains k－th level subgroup P having all even vertex permutations $p_{k i} \in A_{n}$ on X^{k} and trivial permutations in vertices of rest of levels．Furthermore P is normal in W provided k is last active level of $A u t_{f} X^{*}$ ．

Theorem 12．Proper normal subgroups in $S_{n} \backslash S_{m}$（action of group is left），where $n, m \geq 3$ with $n, m \neq 4$ are of the following types：

1）the subgroups of the first level stabilizer［1，4］are

$$
E \imath \widetilde{A_{m}}, \widetilde{T_{m}}, E \imath S_{m}, E \imath A_{n}
$$

2）the subgroups that act on both levels are $A_{n} \imath \widetilde{A_{m}}, S_{n} \imath \widetilde{A_{m}}, A_{n} \backslash S_{m}$ ，
wherein the subgroup $S_{n} \imath \widetilde{A_{m}} \simeq S_{n} \curlywedge(\underbrace{S_{m} \boxtimes S_{m} \boxtimes S_{m} \ldots \boxtimes S_{m}}_{n})$ endowed with the subdirect product［4］ satisfying to condition（3），moreover S_{n} 乙 $\widetilde{A_{m}}$ has two isomorphic copies，embedded into $S_{n} 乙 S_{m}$ in different ways．

In total there are 8 proper normal subgroups in $S_{n} 2 S_{m}$ ．
Proposition 13．All normal subgroups of $S_{n} \imath\left(S_{m} \times S_{k}\right)$ can be partitioned in 2 types：
1）$E \imath\left(N_{i} \times N_{j}\right)$ ，where $N_{i} \triangleleft \prod_{k=1}^{n} S_{m}^{(k)}$ and $N_{j} \triangleleft \prod_{l=1}^{n} S_{l}^{(l)}$ ．
2）$\widetilde{A}_{l} 2\left(N_{i} \times N_{j}\right)$ ，where $\widetilde{A}_{i} \triangleleft S_{n}, N_{i}$ and N_{j} are subgroups from item 1）possessing an extension by \widetilde{A}_{i} in a correspondent groups $S_{n} \downarrow S_{m}$ and in $S_{n} \downarrow S_{k}$ ．The full list of them：$S_{n} \downarrow\left(S_{m} \times \tilde{A}_{k}\right)$ ， $S_{n} \downarrow\left(\widetilde{A}_{m} \times \widetilde{A}_{k}\right), S_{n} \prec\left(\widetilde{A}_{m} \times S_{k}\right)$ ，also $A_{n} \downarrow\left(S_{m} \times \widetilde{A}_{k}\right), A_{n} \imath\left(\widetilde{A}_{m} \times \widetilde{A}_{k}\right)$ ，$A_{n} \imath\left(\widetilde{A}_{m} \times S_{k}\right)$ ．
We denote the set of normal subgroup of $S_{n} \downarrow S_{n}$ by $N\left(S_{n}\right.$ \ $\left.S_{n}\right)$ ．Subgroup with number i from $N\left(S_{n} \backslash S_{n}\right)$ is denoted by $N_{i}\left(S_{n} \downarrow S_{n}\right)$ ．

Theorem 14．The full list of normal subgroups of $S_{n} \backslash S_{n} \backslash S_{n}$ consists of 50 normal subgroups．These subgroups are the following：
1）Type T_{023} contains：$E \ell \tilde{A}_{n} \backslash H$ ，$\widetilde{T_{n}} \backslash H$ ，where $H \in\left\{\tilde{A}_{n}, \tilde{A}_{n^{2}}, S_{n}\right\}$ ．There are 6 subgroups．
2）The second type of subgroups is subclass in $T_{\tilde{\sim}}$ in with new base of wreath product subgroup $\tilde{A}_{n^{2}}: \quad E \backslash S_{n} \backslash \tilde{A}_{n^{2}}, \quad E \backslash A_{n} \backslash \tilde{A}_{n^{2}} \quad E \backslash N_{i}\left(S_{n} \backslash S_{n}\right)$ ．Therefore this class has 12 new subgroups． Thus，the total number of normal subgroups in Type T_{023} is 18.
3）Type $T_{003}: A_{00\left(n^{2}\right)}^{(3)}=E \imath E \imath \tilde{A}_{n^{2}}, \widetilde{T_{n^{2}}}, \widetilde{T_{n}}{ }^{(3)}$ ．Hence，here are 3 new subgroups．
4）Type T_{123} ：$N_{i}\left(S_{n} \backslash S_{n}\right)$ 亿 $S_{n}, N_{i}\left(S_{n} \backslash S_{n}\right)$ 乙 \tilde{A}_{n} and $N_{i}\left(S_{n} \backslash S_{n}\right)$ 亿 $\tilde{A}_{n^{2}}$ ．Thus，there are 29 new normal subgroups in T_{123} ，taking into account repetition［5］．

References

［1］Skuratovskii R．V．Invariant structures of wreath product of symmetric groups．Naukovuy Chasopus of Science hour writing of the National Pedagogical University named after M．P．Dragomanova．（in ukrainian）Series 01．Physics and Mathematics．－2009．Issue 10．－P．163－178．
［2］Sachkov，V．N．，Combinatorial methods in discrete Mathematics．Encyclopedia of mathematics and its applications 55. Cambridge Press．2008．P． 305.
［3］Kaloujnine L．A．Sur les p－group de Sylow du groupe symétrique du degré p^{m} ．／／C．R．Acad．Sci．Paris．－ 1945．－221．－P．222－224．
［4］Drozd，Y．A．，Skuratovskii R．V．Generators and relations for wreath products of groups．Ukr．Math．J．（2008）， 60，pp．1168－1171．
［5］Ruslan Skuratovskii．Normal subgroups of iterated wreath products of symmetric groups and alternating with symmetric groups．2022，Source：［https：／／doi．org／10．48550／arXiv．2108．03752］

