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The notion of K-ultrametric is introduced in [1]. A metric d on a set X is called a K-ultrametric,
where K ∈ [0,∞], if d(x, y) ≤ K, whenever min{d(x, z), d(y, z)} ≤ K.
Any 0-ultrametric is a metric, and any ∞-ultrametric is an ultrametric.
Some resent results are devoted to the K-ultrametrization of various functorial constructions on the

category of K-ultrametric spaces: hyperspaces, spaces of probability measures, spaces of idempotent
measurers [1, 2].
The aim of the talk is provide a construction of K-ultrametrization of the spaces of ∗-measures.

Recall that a t-norm is a binary operation ∗ on [0, 1] which is associative, commutative, continuous,
monotone, and 1 is a unit for it.
A functional µ : C(X, [0, 1]) → [0, 1] is called an ∗-measure if
1) µ preserves constants;
2) µ(max{φ,ψ}) = max{µ(φ), µ(ψ)};
3) µ(λ ∗ φ) = λ ∗ µ(φ).

It is proved that the mentioned construction determines a functor on the category of K-ultrametric
spaces and K-nonexpanding maps.
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