The Riemann-Hilbert problem and holomorphic bundles framed along a real hypersurface

Andrei Teleman

(Aix Marseille Univ, CNRS, I2M, Marseille, France)
E-mail: andrei.teleman@univ-amu.fr

The Riemann sphere \(\mathbb{P}^1 = \mathbb{C} \cup \{ \infty \} \) decomposes as the union \(\mathbb{P}^1 = \tilde{U}^- \cup \tilde{U}^+ \) of two closed disks \(\tilde{U}^- = D, \tilde{U}^+ = \mathbb{P}^1 \setminus D \) intersecting along their boundary \(\partial \tilde{U}^\pm = S^1 \). The Riemann-Hilbert problem, as stated by Hilbert in [2, Kapitel X], asks:

The Riemann-Hilbert Problem. Let \(\Gamma : S^1 \to \text{GL}(r; \mathbb{C}) \) be a smooth map. Find the pairs \((Y^-, Y^+)\) of continuous maps \(Y^\pm : \tilde{U}^\pm \to \mathbb{C}^r\) which are holomorphic on \(U^\pm\) and satisfy the condition \(Y^+|_{S^1} = \Gamma Y^-|_{S^1}\).

More generally, consider

1. A representation \(\rho : G \to \text{GL}(V) \) of a complex Lie group \(G \) on a finitely dimensional complex vector space \(V \),
2. A map \(\Gamma : S \to G \) of class \(C^\kappa \) with \(\kappa \in [0, \infty) \),
3. An integer \(m \in \mathbb{Z} \) and a \(V \)-valued polynomial \(\gamma \in V[z] \). Put \(d := \deg(\gamma) \in \mathbb{Z}_{\geq 1} \).

Regarding \(\infty \) as an effective divisor on \(\mathbb{P}^1_\mathbb{C} \), \(\gamma \) can be interpreted as an element of \(H^0(O(d\infty)(d+1)\infty \otimes V) \). We ask:

The general RH problem on \(\mathbb{P}^1 \). Find the space of pairs \((Y^-, Y^+)\) of continuous maps

\[
Y^{-} : \tilde{U}^- \to V, \ Y^{+} : \tilde{U}^+ \setminus \{\infty\} \to V
\]

with \(Y^- \) holomorphic on \(U^- \), \(Y^+ \) holomorphic on \(U^+ \setminus \{\infty\} \) such that \(Y^+_S = \rho(\Gamma) Y^-_S \), and

\[
\lim_{z \to \infty} (z^{-m} Y^+(z) - \gamma(z)) = 0
\]

The geometric interpretation of the latter condition: \(Y^+ \) extends as a section of the sheaf \(O(m\infty) \otimes \mathbb{C} \) on \(U^+ \) whose image in \(H^0(O(m\infty)(d+1)\infty \otimes V) \) via the obvious morphism is \(z^{m-d} \otimes \gamma \). Hilbert’s original problem is obtained taking \(\rho \) to be the canonical representation of \(\text{GL}(r; \mathbb{C}) \) on \(\mathbb{C}^r \), \(m = 0 \), and \(\gamma = 0 \).

Complex geometric point of view: Consider the sheaf \(\mathcal{V}^\Gamma \) of local solutions of the RH problem with \(m = \gamma = 0 \); this sheaf is given explicitly by:

\[
W \mapsto \begin{cases}
\left(f^- \atop f^+ \right) \in C^0(W \cap \tilde{U}^-, V) \times C^0(W \cap \tilde{U}^+, V) & f^+|_{W \cap S} = \rho(\Gamma) f^-|_{W \cap S}, \ f^+ \text{ is holomorphic on } W \cap U^+ \\
\right.
\end{cases}
\]

Theorem 1. Suppose \(\kappa \in (1, \infty) \setminus \mathbb{N} \). The sheaf of \(O_{\mathbb{P}^1_\mathbb{C}} \)-modules \(\mathcal{V}^\Gamma \) is locally free of rank \(\dim(V) \) and coincides with the apparently smaller sheaf

\[
\left\{ \left(f^- \atop f^+ \right) \in C^\kappa(W \cap \tilde{U}^-, V) \times C^\kappa(W \cap \tilde{U}^+, V) & f^+|_{W \cap S} = \rho(\Gamma) f^-|_{W \cap S}, \ f^+ \text{ is holomorphic on } W \cap U^+ \right. \}
\]

We have an obvious identification

\[
H^0(O(d\infty)(d+1)\infty \otimes V) \cong H^0(\mathcal{V}^\Gamma(d\infty)(d+1)\infty),
\]

so \(\gamma \) gives an element \(\nu^\Gamma_\gamma \in H^0(\mathcal{V}^\Gamma(d\infty)(d+1)\infty) \).
Consider the short exact sequence of coherent sheaves on \mathbb{P}^1_C
\[
0 \to \mathcal{V}^T((m - d - 1)\infty) \to \mathcal{V}^F(m\infty) \to \mathcal{V}^F(m\infty)_{(d+1)\infty} \to 0
\]
and the associated cohomology long exact sequence.

Corollary 2. (1) The space of solutions of the general RH problem is non-empty if and only if the image of $z^{m-d}\otimes\nu^T_\gamma$ via the connecting morphism $H^0(\mathcal{V}^F(m\infty)_{(d+1)\infty}) \to H^1(\mathcal{V}^T((m-d-1)\infty))$ vanishes.
(2) If this is the case, this space has the natural structure of an affine space with model space Regularity Any solution replaces \mathcal{V}^F continuously around X_1.
Let E be a differentiable vector bundle of rank r on a closed complex manifold X, $S \subset X$ a closed, separating real hypersurface, $X = X^- \cup X^+$ the corresponding decomposition of X as union of compact complex manifolds with boundary, and $E^\pm := E|_{X^\pm}$.

Theorem 3. The moduli space $\mathcal{M}_S(E)$ of S-framed holomorphic structures on E can be identified with the fibre product of the moduli spaces $\mathcal{M}_{\partial\bar{X}^\pm}(E^\pm)$ of boundary framed (formally) holomorphic structures on E^\pm over the space of Cauchy-Riemann operators on the trivial bundle of rank r on S.

Note that $\mathcal{M}_{\partial\bar{X}^\pm}(E^\pm)$ can be further identified with moduli spaces of boundary framed Hermitian-Einstein connections on E^\pm using a version of the classical Kobayashi-Hitchin correspondence for complex manifolds with boundary.

References