The Riemann-Hilbert problem and holomorphic bundles framed along a real hypersurface

Andrei Teleman

(Aix Marseille Univ, CNRS, I2M, Marseille, France) E-mail: andrei.teleman@univ-amu.fr

The Riemann sphere $\mathbb{P}^1_{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ decomposes as the union $\mathbb{P}^1_{\mathbb{C}} = \bar{U}^- \cup \bar{U}^+$ of two closed disks $\bar{U}^- = \bar{D}, \bar{U}^+ = \mathbb{P}^1 \setminus D$ intersecting along their boundary $\partial \bar{U}^{\pm} = S^1$. The Riemann-Hilbert problem, as stated by Hilbert in [2, Kapitel X], asks:

The Riemann-Hilbert Problem. Let $\Gamma : S^1 \to \operatorname{GL}(r, \mathbb{C})$ be a smooth map. Find the pairs (Y^-, Y^+) of continuous maps $Y^{\pm} : \overline{U}^{\pm} \to \mathbb{C}^r$ which are holomorphic on U^{\pm} and satisfy the condition $Y^+|_{S^1} = \Gamma Y^-|_{S^1}$.

More generally, consider

- (1) A representation $\rho: G \to \operatorname{GL}(V)$ of a complex Lie group G on a finitely dimensional complex vector space V,
- (2) A map $\Gamma: S \to G$ of class \mathcal{C}^{κ} with $\kappa \in [0, \infty]$,
- (3) An integer $m \in \mathbb{Z}$ and a V-valued polynomial $\gamma \in V[z]$. Put $d := \deg(\gamma) \in \mathbb{Z}_{\geq -1}$.

Regarding ∞ as an effective divisor on $\mathbb{P}^1_{\mathbb{C}}$, γ can be interpreted as an element of $H^0(\mathcal{O}(d\infty)_{(d+1)\infty} \otimes V)$. We ask:

The general RH problem on \mathbb{P}^1 . Find the space of pairs (Y^-, Y^+) of continuous maps

$$Y^-: \overline{U}^- \to V, \ Y^+: \overline{U}^+ \setminus \{\infty\} \to V$$

with Y^- holomorphic on U^- , Y^+ holomorphic on $U^+ \setminus \{\infty\}$ such that $Y_S^+ = \rho(\Gamma)Y_S^-$, and

$$\lim_{z \to \infty} (z^{d-m}Y^+(z) - \gamma(z)) = 0$$

The geometric interpretation of the latter condition: Y^+ extends as a section of the sheaf $\mathcal{O}(m\infty)\otimes_{\mathbb{C}} V$ on U^+ whose image in $H^0(\mathcal{O}(m\infty)_{(d+1)\infty}\otimes V)$ via the obvious morphism is $z^{m-d}\otimes \gamma$. Hilbert's original problem is obtained taking ρ to be the canonical representation of $\operatorname{GL}(r,\mathbb{C})$ on \mathbb{C}^n , m = 0, and $\gamma = 0$.

Complex geometric point of view: Consider the sheaf \mathcal{V}^{Γ} of local solutions of the RH problem with $m = \gamma = 0$; this sheaf is given explicitly by:

$$W \mapsto \left\{ \begin{pmatrix} f^- \\ f^+ \end{pmatrix} \in \begin{array}{c} \mathcal{C}^0(W \cap \bar{U}^-, V) \\ \times \\ \mathcal{C}^0(W \cap \bar{U}^+, V) \end{array} \middle| \begin{array}{c} f^+|_{W \cap S} = \rho(\Gamma) f^-|_{W \cap S}, \\ f^{\pm} \text{ is holomorphic on } W \cap U^{\pm} \end{array} \right\}.$$

Theorem 1. Suppose $\kappa \in (1, \infty] \setminus \mathbb{N}$. The sheaf of $\mathcal{O}_{\mathbb{P}^1_{\mathbb{C}}}$ -modules \mathcal{V}^{Γ} is locally free of rank dim(V) and coincides with the apparently smaller sheaf

$$\left\{ \begin{pmatrix} f^-\\f^+ \end{pmatrix} \in \begin{array}{c} \mathcal{C}^{\kappa}(W \cap \bar{U}^-, V) \\ \times \\ \mathcal{C}^{\kappa}(W \cap \bar{U}^+, V) \end{array} \middle| \begin{array}{c} f^+|_{W \cap S} = \rho(\Gamma) f^-|_{W \cap S}, \\ f^{\pm} \text{ is holomorphic on } W \cap U^{\pm} \end{array} \right\}.$$

We have an obvious identification

 $H^0(\mathcal{O}(d\infty)_{(d+1)\infty}\otimes V)\xrightarrow{\simeq} H^0(\mathcal{V}^{\Gamma}(d\infty)_{(d+1)\infty}),$

so γ gives an element $\nu_{\gamma}^{\Gamma} \in H^0(\mathcal{V}^{\Gamma}(d\infty)_{(d+1)\infty}).$

Consider the short exact sequence of coherent sheaves on $\mathbb{P}^1_{\mathbb{C}}$

$$0 \to \mathcal{V}^{\Gamma}((m-d-1)\infty) \to \mathcal{V}^{\Gamma}(m\infty) \to \mathcal{V}^{\Gamma}(m\infty)_{(d+1)\infty} \to 0$$

and the associated cohomology long exact sequence.

- **Corollary 2.** (1) The space of solutions of the general RH problem is non-empty if and only if the image of $z^{m-d} \otimes \nu_{\gamma}^{\Gamma}$ via the connecting morphism $H^0(\mathcal{V}^{\Gamma}(m\infty)_{(d+1)\infty}) \to H^1(\mathcal{V}^{\Gamma}((m-d-1)\infty))$ vanishes.
 - (2) If this is the case, this space has the natural structure of an affine space with model space $H^0(\mathcal{V}^{\Gamma}((m-d-1)\infty))$, and can be identified with the pre-image of $z^{m-d} \otimes \nu_{\gamma}^{\Gamma}$ via the morphism $H^0(\mathcal{V}^{\Gamma}(m\infty)) \to H^0(\mathcal{V}^{\Gamma}(m\infty)_{(d+1)\infty}).$
 - (3) (Regularity) Any solution (Y^-, Y^+) of a RH problem with Γ of class \mathcal{C}^{κ} is also of class \mathcal{C}^{κ} up to the boundary.

Note that, by Grothendieck's classification theorem, \mathcal{V}^{Γ} splits as a direct sum of invertible sheaves, so $\mathcal{V}^{\Gamma} \simeq \bigoplus_{j=1}^{r} \mathcal{O}(n_j)$ with $n_j \in \mathbb{Z}$ and $\sum_{j=1}^{r} n_j = \deg(\mathcal{V}^{\Gamma})$. For the canonical representation of $\operatorname{GL}(r, \mathbb{C})$ on \mathbb{C}^r we have $\deg(\mathcal{V}^{\Gamma}) = -\deg(\det(\Gamma))$.

The RH problem can be naturally generalized in the framework of Riemann surfaces as follows: we replace $\mathbb{P}^1_{\mathbb{C}}$ by an arbitrary closed Riemann surface X, the circle S^1 by an arbitrary (not necessarily connected, not necessarily separating) oriented closed curve $S \subset X$, and Γ by a map $\Gamma \in \mathcal{C}^{\kappa}(S,G)$. Let \widehat{X}_S be the Riemann surface with boundary obtained by cutting X along S. The unknown of the RH problem associated with these data is a meromorphic map $Y : \widehat{X}_S \setminus \partial \widehat{X}_S \dashrightarrow V$, which extends continuously around $\partial \widehat{X}_S$ and satisfies a compatibility condition associated with Γ . In this general framework one also has a complex geometric interpretation of the space of solutions which generalizes Corollary 2.

All these results are applications of a general gluing theorem for holomorphic bundles. The same theorem can be used to prove an isomorphism theorem between moduli spaces of framed holomorphic bundles [5], [1]:

Let E be a differentiable vector bundle of rank r on a closed complex manifold $X, S \subset X$ a closed, separating real hypersurface, $X = \overline{X}^- \cup \overline{X}^+$ the corresponding decomposition of X as union of compact complex manifolds with boundary, and $E^{\pm} := E|_{\overline{X}^{\pm}}$.

Theorem 3. The moduli space $\mathcal{M}_S(E)$ of S-framed holomorphic structures on E can be identified with the fibre product of the moduli spaces $\mathcal{M}_{\partial \bar{X}^{\pm}}(E^{\pm})$ of boundary framed (formally) holomorphic structures on E^{\pm} over the space of Cauchy-Riemann operators on the trivial bundle of rank r on S.

Note that $\mathcal{M}_{\partial \bar{X}^{\pm}}(E^{\pm})$ can be further identified with moduli spaces of boundary framed Hermitian-Einstein connections on E^{\pm} using a version of the classical Kobayashi-Hitchin correspondence [3] for complex manifolds with boundary [1], [6].

References

- [1] S. Donaldson. Boundary value problems for Yang-Mills fields. Journal of Geometry and Physics, 8: 89–122, 1992.
- [2] D. Hilbert. Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen : Leipzig und Berlin Druck und Verlag von B. G.Teubner, 1912.
- [3] M. Lübke, A. Teleman. The Kobayashi-Hitchin correspondence : World Scientific Publishing Co., 1995.
- [4] A. Teleman. Holomorphic bundles on complex manifolds with boundary, arXiv:2203.10818 [math.CV], to appear in Mathematical Research Letters.
- [5] A. Teleman, M. Toma. Holomorphic bundles framed along a real hypersurface, in preparation.
- [6] Z. Xi. Hermitian-Einstein metrics on holomorphic vector bundles over Hermitian manifolds. Journal of Geometry and Physics, 53: 315–335, 2005.