PROXIMAL CONNECTEDNESS. SPATIALLY AND DESCRIPTIVELY CONNECTED SPACES

James Francis Peters

(University of Manitoba, Department of Electrical & Computer Engineering, Winnipeg, MB, R3T 5V6, Canada and Adiyaman University, Department of Mathematics, Faculty of Arts and Sciences, 02040 Adiyaman, Turkey)

E-mail: james.peters3@umanitoba.ca

 Tane Vergili

 (Karadeniz Technical University, Department of Mathematics, 61080 Trabzon, Turkey)

 E-mail: tane.vergili@ktu.edu.tr

In this paper, we give results for spatially-connected spaces (X, δ) [5] (a widely-considered proximity space) and descriptively-connected spaces (X, δ_{Φ}) , a recent form of proximity space [3] with a number of applications. Definition 1 is analogous to connectedness in digital topology [2].

Definition 1. Let (X, δ) be a proximity space. Then two nonempty subsets A and B are δ -connected, provided there exists a finite family of subsets $\{E_i\}_{i=0}^n$ of X such that $A = E_0$, $B = E_n$, and $E_i \delta E_{i+1}$ for all $i = 0, 1, \ldots, n-1$. A proximity space (X, δ) is said to be connected, provided any pair of subsets A, B of X are δ -connected.

FIGURE 1. Spatially near homotopy maps in spatial far homotopy classes [h], [k]

Example 2. In Figure 1, let $h, k : I \to K$ be continuous maps called homotopies in a space K. A homotopic class for different maps h (denoted by $[h] = \{h_0, \ldots, h_i, \ldots, h_{n-1[n]}\}$ with $[n] = \mod n \in \mathbb{Z}^+$) is a collection of $h_{i[n]}$ homotopic maps that have the same endpoints, namely, $h_i(0)$ and $h_i(1)$. The maps in [h] are spatially near. Similarly, the maps in [k] are spatially near. However, the homotopy classes [h], [k] are spatially far. Also, from Definition 1, every pair of nonempty subsets $A, B \in [h]$ are δ -connected, since $A \delta B$. Likewise, the maps in [k] are δ -connected.

Theorem 3. Let (X, δ_1) and (Y, δ_2) be proximity spaces. Then a map $f : X \to Y$ is proximally continuous if and only if a pair of δ_1 -connected subsets of X is mapped to a pair of δ_2 -connected subsets of Y.

Definition 4. [1] Let (X, δ_{Φ}) be a descriptive proximity space. Then two subsets A and B are δ_{Φ} -connected, provided there exists a finite family of subsets $\{D_i\}_{i=0}^n$ of X such that $D_0 = A$,

 $D_n = B$, and $D_i \delta_{\Phi} D_{i+1}$ for all i = 0, 1, ..., n-1. A descriptive proximity space (X, δ_{Φ}) is said to be **descriptively connected**, provided any pair of subsets A, B of X are δ_{Φ} -connected.

Proposition 5. In a digital topology space X, descriptively near sets in a digital image X are descriptively connected.

Theorem 6. Let (X, δ_{Φ_1}) and (Y, δ_{Φ_2}) be descriptive proximity spaces. Then a map $f : X \to Y$ is descriptive proximally continuous if and only a pair of δ_{Φ_1} -connected subsets of X is mapped to a pair of δ_{Φ_2} -connected subsets of Y.

Given a set $X \subset \mathbb{Q} \times \mathbb{Q}$, a digital image on X is a map $Img : X \to \mathbb{R}$ so that each picture element $p \in X$ aka (sub)pixels or (sub)voxels has location $\mathbb{Q} \times \mathbb{Q}$ and value $Img(p) \in \mathbb{R}$. There are two distinct type digital images, namely, frames (denoted by Img_t or simply by fr_t) which is a time-ordered sequence of images in which each frame occurs at an elapsed time t in a video, and single images (denoted by Img). The intersection of the closures of bounded regions with nonempty interiors give rise to δ -connectedness.

Definition 7. Given a digital image Img, two subimages A and B, are adjacent, denoted by $A \underset{\kappa}{\delta} B$, provided there exist pixels $p \in A$ and $q \in B$ such that p = q or p and q are adjacent.

Definition 8. A bounded region $E \subset fr$ with a non-empty interior is said to be δ -connected, provided for each pair of distinct voxels p and q in E, there exists a finite sequence of voxels $p = v_0, v_1, \ldots, v_n = q$ such that each pair of consecutive voxels v_i and v_{i+1} is δ -connected for all $i = 0, 1, \ldots, n-1$.

Proposition 9. δ -connected regions are preserved under a continuous digital functions.

Example 10. Consider a moving object appears as a bounded foreground region recorded in a video frame fr_t . Observe that the moving object -as a bounded region- is partitioned into (bounded) δ_{κ} connected subregions, which cover the moving object with a minimum number of contractible subregions is a form of geometric Lusternik-Schirel'mann category [4].

Spatially near subsets in a digital image (*i.e.*, subsets that share points) reside in a discrete proximity space.

Definition 11. For any pair of nonempty subsets A, B in a digital image Img, A is near B (denoted by $A \delta B$), provided A and B have points in common, *i.e.*, $A \delta B$ iff $A \cap B \neq \emptyset$. Hence, δ is a discrete proximity relation and (Img, δ) is a discrete proximity space [6, §40.2, pp. 266-267].

References

- [1] Maram Almahariq. Proximal Homotopy of Proximally Continuous Functions. *Karadeniz Technical University*, (in progress) Supervisor: Tane Vergili.
- [2] Laurence Boxer. A classical construction for the digital fundamental group. Journal of Mathematical Imaging and Vision, 10: 51–62, 1999.
- [3] Anna Di Concilio, Clara Guadagni, James F. Peters, and Sheela Ramanna. Descriptive proximities i: Properties and interplay between classical proximities and overlap. arXiv 1609 (2016), no. 06246v1, 1-12, Math. in Comp. Sci. 2017, to appear.
- [4] Luis Montejano, Lusternik Schirel'mann category: a geometric approach. Banach Cent. Publ. 18: 117–129, 1986.
- [5] Somashekhar A. Naimpally and B.D. Warrack. Proximity Spaces, Cambridge Tract in Mathematics No. 59, Cambridge University Press, 1970.
- [6] Stephen Willard. General topology, Dover Pub., Inc., Mineola, NY, 1970.