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This talk is based on [9], and it deals with the theory of potentials on Rn, n ⩾ 2, with respect to the
Riesz kernel |x− y|α−n, α ∈ (0, 2], α < n, where |x− y| is the Euclidean distance between x, y ∈ Rn.
Denote by M+ the cone of all positive Radon measures µ on Rn such that the Riesz potential

Uµ(x) :=

∫
|x− y|α−n dµ(y)

is not identically infinite on Rn, which according to [5, Section I.3.7] occurs if and only if∫
|y|>1

dµ(y)

|y|n−α
< ∞.

Then Uµ is actually finite everywhere on Rn, up to a set of zero Riesz capacity, cf. [5, Section III.1.1].
The principle of positivity of mass was first introduced by J. Deny (see e.g. [2]), and for Riesz

potentials it reads as follows [3, Theorem 3.11].
Theorem 1. For any µ, ν ∈ M+ such that

Uµ ⩽ Uν everywhere on Rn, (1)
we have µ(Rn) ⩽ ν(Rn).
It is easy to verify that (1) can be slightly weakened by replacing ‘everywhere on Rn’ by ‘nearly

everywhere on Rn’ (see [8, Theorem 2.6], establishing the principle of positivity of mass for potentials
with respect to rather general function kernels on locally compact spaces). Recall that a proposition
P(x) is said to hold nearly everywhere (n.e.) on A ⊂ Rn if c∗(E) = 0, where E is the set of all x ∈ A
for which P(x) fails, while c∗(E) denotes the inner Riesz capacity of E, see [5, Section II.2.6].
The main result of this talk, given by Theorem 2, shows that Theorem 1 still holds even if (1) is

fulfilled only on a proper subset A of Rn, which however must be ‘large enough’ in an arbitrarily small
neighborhood of ∞Rn , the Alexandroff point of Rn. This discovery illustrates a special role of the
point at infinity in Riesz potential theory, in particular with regard to the principle of positivity of
mass.
Theorem 2. Given µ, ν ∈ M+, assume there exists A ⊂ Rn which is not inner α-thin at infinity, and
such that

Uµ ⩽ Uν n.e. on A.

Then
µ(Rn) ⩽ ν(Rn).

Recall that according to [4, 7], A ⊂ Rn is said to be inner α-thin at infinity if∑
k∈N

c∗(Ak)

qk(n−α)
< ∞, (2)

where q ∈ (1,∞) and Ak := A ∩ {x ∈ Rn : qk ⩽ |x| < qk+1}; or equivalently, if either A is bounded,
or x = 0 is an inner α-irregular boundary point for the inverse of A with respect to |x| = 1. (For
the concept of inner α-irregular points for arbitrary A ⊂ Rn and relevant results, see [6, Section 6];
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compare with [5, Section V.1], where A was required to be Borel.) We emphasize that if A is not
inner α-thin at infinity, then necessarily c∗(A) = ∞; but not the other way around (see [7, Section 2]).
The following theorem shows that Theorem 2 is sharp in the sense that the requirement on A of

not being α-thin at infinity can not in general be weakened.
Theorem 3. If A ⊂ Rn is inner α-thin at infinity, then there are µ0, ν0 ∈ M+ such that Uµ0 = Uν0

nearly everywhere on A, but nonetheless, µ0(Rn) > ν0(Rn).
Nevertheless, Theorem 2 remains valid for arbitrary A ⊂ Rn once we impose upon µ, ν ∈ M+

suitable additional requirements (see Theorem 4 below).
A measure µ ∈ M+ is said to be carried by A ⊂ Rn if Rn \A is µ-negligible, or equivalently if A is

µ-measurable and µ = µ|A, µ|A being the trace of µ to A, cf. [1, Section V.5.7]. We denote byM+
A the

cone of all µ ∈ M+ carried by A. (For closed A, µ is carried by A if and only if it is supported by A.)
A measure µ ∈ M+ is said to be C-absolutely continuous if µ(K) = 0 for every compact set K ⊂ Rn

of zero Riesz capacity. This certainly occurs if
∫
Uµ dµ is finite (or, more generally, if Uµ is locally

bounded); but not conversely, see [5, pp. 134–135].
Theorem 4. For any set A ⊂ Rn and any C-absolutely continuous measures µ, ν ∈ M+

A such that
Uµ ⩽ Uν n.e. on A, we still have µ(Rn) ⩽ ν(Rn).
Remark 5. If A ∩ AI = ∅, where AI denotes the set of all inner α-irregular points for A, then the
requirement of C-absolute continuity imposed on µ and ν, is unnecessary for the validity of Theorem 4.
Remark 6. The proofs of the above-quoted theorems are based on the theory of inner α-Riesz balayage
as well as on that of inner α-Riesz equilibrium measures, both originated in [6, 7] (see also [8]). The
concept of inner equilibrium measure is understood in an extended sense where its energy as well as
its total mass may be infinite. The following two facts of these theories are crucial to our proofs:

• A ⊂ Rn is not α-thin at infinity if and only if the inner balayage of any µ ∈ M+ to A preserves
its total mass (see [7, Corollary 5.3]).

• The inner α-Riesz equilibrium measure of A ⊂ Rn exists if and only if A is α-thin at infinity
(see [7, Theorem 2.1]).

Remark 7. The results presented in the talk have already found applications to minimum Riesz
energy problems in the presence of external fields, see for instance [10, Section 4.10].
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