Surfaces with zero mean curvature vector in 4-dimensional spaces

Naoya Ando (Kumamoto University, Japan)

International Scientific Online Conference Algebraic and Geometric Methods of Analysis 2023 (N, h): an oriented Riemannian 4-dimensional manifold.

We have a bundle decomposition $\bigwedge^2 TN = \bigwedge^2_+ TN \oplus \bigwedge^2_- TN$.

The twistor spaces associated with N are the sphere bundles in $\bigwedge_{\pm}^{2} TN$:

$$U\left(\bigwedge_{\pm}^{2}TN\right) := \left\{\Theta \in \bigwedge_{\pm}^{2}TN \mid \hat{h}(\Theta, \Theta) = 1\right\}.$$

M: a Riemann surface,

 $F: M \longrightarrow N$: a conformal and minimal immersion of M into N, $\Theta_{F,\pm}$: sections of $U\left(\bigwedge_{\pm}^{2} F^{*}TN\right)$ defined by $\Theta_{F,\pm} := \frac{1}{\sqrt{2}}(\xi_{1} \wedge \xi_{2} \pm \xi_{3} \wedge \xi_{4}),$ where $\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}$ form a local orthonormal frame field of $F^{*}TN$ s.t.

- $(\xi_1, \xi_2, \xi_3, \xi_4)$ gives the orientation of N,
- $\xi_1, \xi_2 \in dF(TM)$ so that (ξ_1, ξ_2) gives the orientation of M.

 σ : the second fundamental form of F,

 $w = u + \sqrt{-1}v$: a local complex coordinate of M,

$$\sigma_{ww} := \sigma \left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w} \right), \quad \frac{\partial}{\partial w} = \frac{1}{2} \left(\frac{\partial}{\partial u} - \sqrt{-1} \frac{\partial}{\partial v} \right).$$

Then $Q := h(\sigma_{ww}, \sigma_{ww})dw^4$ does not depend on the choice of a local complex coordinate w and we can define a complex quartic differential Q on M.

If N is a 4-dimensional Riemannian space form,

then it follows from the equations of Codazzi that Q is holomorphic.

Fact 1 The following are mutually equivalent:

- (a) at each point of M, principal curvatures do not depend on the choice of a unit normal vector of F;
- (b) $h(\sigma(T_1, T_1), \sigma(T_1, T_1)) = h(\sigma(T_1, T_2), \sigma(T_1, T_2)), h(\sigma(T_1, T_1), \sigma(T_1, T_2)) = 0;$ (c) $Q \equiv 0;$
- (d) one of $\Theta_{F,\pm}$ is horizontal w.r.t. the connection $\hat{\nabla}$ of $\bigwedge^2 F^*TN$ induced by the Levi-Civita connection ∇ of h;
- (e) one of the complex structures $I_{F,\pm}$ corresponding to $\Theta_{F,\pm}$ is parallel w.r.t. ∇ ; (f) we have one of $I_{F,\pm}\sigma(T_1,T_1) = \sigma(T_1,T_2)$,

where
$$T_1 := dF\left(\frac{\partial}{\partial u}\right), T_2 := dF\left(\frac{\partial}{\partial v}\right).$$

We say that a minimal immersion F is *isotropic* if F satisfies one of (a) \sim (f) in Fact 1. We see

- (a), (b), (c) and (f) are mutually equivalent,
- (d) and (e) are equivalent.

In addition, (a) and (d) are equivalent ([6]).

Suppose $N = E^4$. Then $U\left(\bigwedge_{\pm}^2 T E^4\right) \cong E^4 \times \mathbb{C}P^1$, and an isotropic minimal surface is given by the composition of an isometry of E^4 and a holomorphic immersion into $E^4 = \mathbb{C}^2$.

Suppose $N = S^4$. Then $U\left(\bigwedge_{\pm}^2 TS^4\right) = SO(5)/U(2) \cong Sp(2)/U(2) = \mathbb{C}P^3$, and an isotropic minimal surface (superminimal surface) is given by the composition of the twistor map and a holomorphic and horizontal immersion into $\mathbb{C}P^3$ ([4]). (N, h): an oriented neutral 4-dimensional manifold.

 \implies The metric h induces an indefinite metric \hat{h} of $\bigwedge^2 TN$ with signature (2, 4). We have a bundle decomposition $\bigwedge^2 TN = \bigwedge_+^2 TN \oplus \bigwedge_-^2 TN$ and we see

- $\bigwedge_{+}^{2} TN \perp \bigwedge_{-}^{2} TN$ w.r.t. \hat{h} ,
- the restriction of \hat{h} on each of $\bigwedge_{\pm}^{2} TN$ has signature (1, 2).

The space-like (or hyperbolic) twistor spaces associated with N are fiber bundles in $\bigwedge_{\pm}^2 TN$ given by

$$U_{\pm}\left(\bigwedge_{\pm}^{2}TN\right) := \left\{\Theta \in \bigwedge_{\pm}^{2}TN \mid \hat{h}(\Theta,\Theta) = 1\right\}.$$

M: a Riemann surface,

 $F: M \longrightarrow N$: a space-like and conformal immersion of M into N with zero mean curvature vector,

 $\Theta_{F,\pm}$: sections of $U_+\left(\bigwedge_{\pm}^2 F^*TN\right)$ defined by $\Theta_{F,\pm} := \frac{1}{\sqrt{2}}(\xi_1 \wedge \xi_2 \mp \xi_3 \wedge \xi_4),$

where $\xi_1, \xi_2, \xi_3, \xi_4$ form a local pseudo-orthonormal frame field of F^*TN s.t.

- $(\xi_1, \xi_2, \xi_3, \xi_4)$ gives the orientation of N,
- $\xi_1, \xi_2 \in dF(TM)$ so that (ξ_1, ξ_2) gives the orientation of M.

Fact 2 The following are mutually equivalent:

- (a) at each point of M, principal curvatures do not depend on the choice of a normal vector e^{\perp} of F with $h(e^{\perp}, e^{\perp}) = -1$;
- (b) $h(\sigma(T_1, T_1), \sigma(T_1, T_1)) = h(\sigma(T_1, T_2), \sigma(T_1, T_2)), h(\sigma(T_1, T_1), \sigma(T_1, T_2)) = 0;$ (c) $Q = h(\sigma_{ww}, \sigma_{ww})dw^4$ vanishes;
- (d) one of $\Theta_{F,\pm}$ is horizontal w.r.t. $\hat{\nabla}$;
- (e) one of the complex structures $I_{F,\pm}$ corresponding to $\Theta_{F,\pm}$ is parallel w.r.t. ∇ ; (f) we have one of $I_{F,\pm}\sigma(T_1,T_1) = \sigma(T_1,T_2)$.

We say that F is *isotropic* if F satisfies one of (a) \sim (f) in Fact 2.

The time-like twistor spaces associated with N are fiber bundles in $\bigwedge_{\pm}^{2} TN$ given by $U_{-}\left(\bigwedge_{\pm}^{2} TN\right) := \left\{\Theta \in \bigwedge_{\pm}^{2} TN \mid \hat{h}(\Theta, \Theta) = -1\right\}.$

- M: a Lorentz surface (two-dimensional manifold with a holomorphic system of paracomplex coordinate neighborhoods),
- $F: M \longrightarrow N$: a time-like and conformal immersion of M into N with zero mean curvature vector,

$$\Theta_{F,\pm}: \text{ sections of } U_{-}\left(\bigwedge_{\pm}^{2} F^{*}TN\right) \text{ defined by } \Theta_{F,\pm}:=\frac{1}{\sqrt{2}}(\xi_{1} \wedge \xi_{3} \pm \xi_{4} \wedge \xi_{2}),$$

where $\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}$ form a local pseudo-orthonormal frame field of $F^{*}TN$
(we suppose that ξ_{1}, ξ_{2} are space-like) s.t.

- $(\xi_1, \xi_2, \xi_3, \xi_4)$ gives the orientation of N,
- $\xi_1, \xi_3 \in dF(TM)$ so that (ξ_1, ξ_3) gives the orientation of M.

Fact 3-1 The following are equivalent: (b) $h(\sigma(T_1, T_1), \sigma(T_1, T_1)) = -h(\sigma(T_1, T_2), \sigma(T_1, T_2)), h(\sigma(T_1, T_1), \sigma(T_1, T_2)) = 0;$ (c) $Q = h(\sigma_{ww}, \sigma_{ww})dw^4$ vanishes.

We say that F is *isotropic* if F satisfies one of (b), (c) in Fact 3-1.

Fact 3-2 The following are mutually equivalent:

(d) one of $\Theta_{F,\pm}$ is horizontal w.r.t. $\hat{\nabla}$;

- (e) one of the paracomplex structures $J_{F,\pm}$ corresponding to $\Theta_{F,\pm}$ is parallel w.r.t. ∇ ;
- (f) we have one of $J_{F,\pm}\sigma(T_1,T_1) = \sigma(T_1,T_2)$.

In addition, if F satisfies one of (d), (e), (f), then F is isotropic.

We say that F is *strictly isotropic* if F satisfies one of (d), (e), (f) in Fact 3-2 for the orientation of N.

It is possible that although F is isotropic, the covariant derivatives of $\Theta_{F,\pm}$ are not zero but light-like.

Proposition ([2])

Both $\hat{\nabla}\Theta_{F,+}$ and $\hat{\nabla}\Theta_{F,-}$ are light-like or zero if and only if F satisfies one of the following:

- (a) the shape operator of a light-like normal vector field vanishes, and then Q vanishes;
- (b) the shape operator of any normal vector field is zero or light-like, and then Q is null or zero.

Suppose that N is a 4-dimensional neutral space form.

Condition (a) implies that a light-like normal vector field of the surface is contained in a constant direction.

The conformal Gauss map of a time-like surface in a 3-dimensional Lorentzian space form of Willmore type with $Q \equiv 0$ satisfies Condition (a) ([1]).

By the equations of Gauss-Codazzi-Ricci, we obtain

Theorem ([2])

 $F: M \longrightarrow N$: a time-like and conformal immersion of M into N with zero mean curvature vector.

Then F satisfies Condition (b) if and only if the following hold:

- the curvature K of the induced metric by F is identically equal to the constant sectional curvature L₀ of N;
- the second fundamental form σ of F satisfies a "light-like condition";
- the curvature tensor of the normal connection ∇^{\perp} of F vanishes.

Remark The Gauss-Weingarten equations for surfaces as in the above theorem are given by

$$\tilde{\nabla}_{T_1}(T_1 \ T_2 \ N_1 \ N_2 \ F) = (T_1 \ T_2 \ N_1 \ N_2 \ F)A,$$

$$\tilde{\nabla}_{T_2}(T_1 \ T_2 \ N_1 \ N_2 \ F) = (T_1 \ T_2 \ N_1 \ N_2 \ F)B,$$

where

$$A = \begin{bmatrix} \lambda_u & \lambda_v & -\alpha_+ & \alpha_- & 1\\ \lambda_v & \lambda_u & \varepsilon \alpha_+ & -\varepsilon \alpha_- & 0\\ \alpha_+ & \varepsilon \alpha_+ & \lambda_u & \gamma_u & 0\\ \alpha_- & \varepsilon \alpha_- & \gamma_u & \lambda_u & 0\\ -L_0 e^{2\lambda} & 0 & 0 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} \lambda_v & \lambda_u & -\varepsilon \alpha_+ & \varepsilon \alpha_- & 0\\ \lambda_u & \lambda_v & \alpha_+ & -\alpha_- & 1\\ \varepsilon \alpha_+ & \alpha_+ & \lambda_v & \gamma_v & 0\\ \varepsilon \alpha_- & \alpha_- & \gamma_v & \lambda_v & 0\\ 0 & L_0 e^{2\lambda} & 0 & 0 & 0 \end{bmatrix}$$

and

- $\varepsilon = 1$ or -1,
- $\lambda_{uu} \lambda_{vv} = -L_0 e^{2\lambda},$ $\alpha_{\pm} = \pm \frac{1}{2e^{\lambda}} (\phi(u + \varepsilon v)e^{\gamma} \pm \psi(u + \varepsilon v)e^{-\gamma}),$
- γ is a function of u, v, and ϕ, ψ are functions of one variable.

THANK YOU VERY MUCH FOR YOUR ATTENTION!