Thurston norm and Euler classes of bounded mean curvature foliations on hyperbolic 3-Manifolds

Dmitry V.Bolotov

B. Verkin ILTPE of NASU

AGMA-2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Foliations

A foliation \mathcal{F} of codimension q on smooth manifold M of dimension n = p + q is a partition $\{L_{\alpha}\}$ of M into connected subsets with the following property. For every point of M there is a neighborhood U and a chart $U \xrightarrow{(x,y)} \mathbb{R}^p \times \mathbb{R}^q$ $((x,y) = (x_1, \ldots, x_p, y_1, \ldots, y_q))$ such that for each leaf L_{α} are the connected component $U \cap L_{\alpha}$ defined by the equation y = const.

Let M be an oriented Riemannian manifold. Then

$$TM = T\mathcal{F} \oplus (T\mathcal{F})^{\perp}$$

where $T\mathcal{F}$ is distribution tangent to \mathcal{F} . \mathcal{F} is transversely oriented if $(T\mathcal{F})^{\perp}$ is an oriented vector bundle. Note that in this case $T\mathcal{F}$ is also oriented. In particular, the leaves of \mathcal{F} are oriented submanifolds.

If a codimension of \mathcal{F} is equal to one then $T\mathcal{F} = \ker \omega$, where ω is nonsingular 1-form.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall that by the Frobenius theorem if ω is nonsingular 1-form, then $\omega \wedge d\omega = 0$ is equivalent to the fact that the distribution $L = \ker \omega$ tangent to a foliation.

Examples

<ロト <回ト < 注ト < 注ト

э

Novikov theorem (1967)

- 1. For compact, orientable and transversely orientable foliated 3-manifolds (M, \mathcal{F}) , the following are equivalent.
 - a) The foliation $\mathcal F$ has a Reeb component.
 - b) There is a leaf L of \mathcal{F} that is not π_1 -injective. That is, the inclusion $i: L \to M$ induces a homomorphism $i_*: \pi_1(L) \to \pi_1(M)$ with nontrivial kernel.
 - c) Some leaf of ${\mathcal F}$ contains a non-trivial vanishing cycle.
- 2. The leaf supporting the non-trivial vanishing cycle is a torus bounding a Reeb component.

As a corollary Novikov proved that every foliation on a closed oriented 3-manifold M with a finite fundamental group (e.g. $M = S^3$) contains a Reeb component.

Generelized Reeb components

Let (M,g) be a closed oriented three-dimensional Riemannian manifold and let \mathcal{F} be a transversely oriented smooth foliation of codimension one on M.

Definition

A subset A of a three-dimensional compact orientable manifold M with a given transversely orientable foliation \mathcal{F} of codimension one is called a *generalized Reeb component* if A is a connected three-dimensional submanifold of M with a boundary which is a family of compact leaves with the property that any transversal to \mathcal{F} vector field restricted to the boundary ∂A of A is directed either everywhere inwards or everywhere outwards of the Reeb component A. In particular, the Reeb component R is a generalized Reeb component. It is not difficult to show that ∂A is a family of tori (Goodman -1975). Recall that a foliation \mathcal{F} is *taut* if a closed transversal passes through each leaf of \mathcal{F} . The following properties of \mathcal{F} are equivalent (Sullivan -1979, Goodman - 1975):

- ${\mathcal F}$ is taut;
- \mathcal{F} is *minimal* (i.e. its leaves are minimal submanifolds of M) for some Riemannian metric on M;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ${\mathcal F}$ does not contain generalized Reeb components.

Thurston norm

Let *M* be a closed, oriented 3-manifold. The Thurston norm on $H_2(M, \mathbb{Z})$ is defined as follows (Thurston-1986):

 $||a||_{Th} = inf\{\chi_{-}(\Sigma)|\Sigma \text{ is an emb. surf. representing } a \in H_{2}(M,\mathbb{Z})\},\$

where $\chi_{-}(\Sigma) = max\{-\chi(\Sigma), 0\}$. Recall that $\chi(\Sigma) = 2 - 2g$ denotes the Euler characteristic of a surface Σ of genus g. When Σ is not connected, define $\chi_{-}(\Sigma)$ to be the sum $\chi_{-}(\Sigma_{1}) + \cdots + \chi_{-}(\Sigma_{k})$, where Σ_{i} , $i = 1, \ldots, k$ are the connected components of Σ . As Thurston showed, the Thurston norm can be extended in a unique way to the seminorm in $H_{2}(M, \mathbb{R})$.

Dual Thurston norm

Let M be a closed, oriented 3-manifold, and suppose that M contains no non-separating 2 - spheres or tori, for example, M is a closed oriented hyperbolic 3-Manifold, then $|| \cdot ||_{Th}$ is a norm.

Definition

The dual Thurston norm can be defined on $H^2(M, \mathbb{R})$ by the formula

$$||\alpha||_{Th}^* = \sup_{\Sigma} \frac{\langle \alpha, [\Sigma] \rangle}{2g(\Sigma) - 2}, \tag{1}$$

where $\alpha \in H^2(M, \mathbb{R})$ and the supremum being taken over all connected, oriented surfaces Σ embedded in M whose genus g is at least 2.

Thurston proved that the convex hull of the Euler classes of taut foliations on M is the unit ball for the dual Thurston norm. In particular, the Thurston norm $||e(\mathcal{F})||_{Th}^*$ of the Euler class $e(\mathcal{F}) \in H^2(M, \mathbb{R})$ of a taut foliation \mathcal{F} no more then one.

Previous result (B. -2022)

Let $V_0 > 0$, $i_0 > 0$, $K_0 \ge 0$ be fixed constants, and M be a closed oriented three-dimensional Riemannian manifold with the following properties: the volume $Vol(M) \le V_0$; the sectional curvature K of M satisfies the inequality $K \le K_0$; min $\{inj(M), \frac{\pi}{2\sqrt{K_0}}\} \ge i_0$, where inj(M) is the injectivity radius of of M. Let us set

$$H_0 = \begin{cases} \min\{\frac{2\sqrt{3}i_0^2}{V_0}, \sqrt[3]{\frac{2\sqrt{3}}{V_0}}\}, & \text{if } K_0 = 0, \\ \min\{\frac{2\sqrt{3}i_0^2}{V_0}, x_0\}, & \text{if } K_0 > 0, \end{cases}$$

where x_0 is the root of the equation

$$\frac{1}{K_0}\operatorname{arccot}^2 \frac{x}{\sqrt{K_0}} - \frac{V_0}{2\sqrt{3}}x = 0.$$

Then any smooth transversely oriented foliation \mathcal{F} of codimension one on M, such that the modulus of the mean curvature of its leaves satisfies the inequality $|H| < H_0$, should be taut, in particular, minimal for some Riemannian metric on M.

Main Theorem

Let M be a closed oriented hyperbolic 3-Manifold and \mathcal{F} be a two-dimensional transversely oriented foliation \mathcal{F} whose leaves have the modulus of mean curvature bounded above by the fixed positive constant H_0 . Then

- a) If $H_0 \leq 1$, we have \mathcal{F} is taut and $||e(\mathcal{F})||_{Th}^* \leq 1$.
- b) If $H_0 > 1$, we have

$$||e(\mathcal{F})||_{Th}^* \le 2\pi \frac{1600H_0^2 \operatorname{Vol}(M)^2}{C_0^3 \operatorname{inj}(M)} + \frac{300\operatorname{Vol}(M)}{\operatorname{inj}(M)} + 1,$$

where $C_0 = 2 \min\{inj(M), (\operatorname{coth})^{-1}(H_0)\}$, Vol(M) is the volume of M and inj(M) is the injectivity radius of M.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Thurston's approach to calculating $e(T\mathcal{F})$

Let $p: N^2 \to (M, \mathcal{F})$ be a general position immersion of a closed oriented surface N^2 . The induced foliation $\mathcal{F}' = p^{-1}(\mathcal{F} \cap p(N^2))$ on N^2 can be oriented outside the singular points. To verify this let us take a normal vector field n to the foliation \mathcal{F} and for all $x = p(z) \in p(N^2)$ consider the orthogonal projection n'(x) of the normal n(x) to \mathcal{F} onto the tangent plane $p_*(T_z(N^2))$, which in the case where z is not a singular point uniquely determines the unit tangent vector e' to the leaf $\mathcal{L}'_z \in \mathcal{F}', z \in \mathcal{L}'_z$, such that the frame $\{e', p_*^{-1} \frac{n'}{|n'|}\}$ defines a positive orientation of $T_z(N^2)$. Now we can define a smooth vector field X on N^2 tangent to \mathcal{F}' whose zeros correspond to the singular points of \mathcal{F}' putting

$$X = |n'|e'. \tag{2}$$

As W. Thurston showed, to calculate the value of the Euler class $e(T\mathcal{F})$ of the foliation \mathcal{F} on the class $[p, N^2]$, it suffices to calculate the total index of singular points of the vector field X on N^2 taking into account the orientation of $p_*(T_q(N^2))$ at singular points. Since M is oriented we can uniquely choose a unit normal vector $m \in T_{p(q)}M$ to the plane $p_*(T_q(N^2), q \in N^2)$, which defines the orientation of $p_*(T_q(N^2))$ coming from the orientation of $T_q(N^2)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We say that a singular point $q \in N^2$ is of *negative* type if m(p(q)) = -n(p(q)). In the case when m(p(q)) = n(p(q)) the type of the singular point is called *positive*.

We denote by I_N the sum of indices of negative type singular points of the vector field X and by I_P the sum of indices of positive type singular points. Then, as W. Thurston showed, the value of the Euler class $e(T\mathcal{F})$ on the homology class $[N^2, p]$ is calculated as follows:

$$e(T\mathcal{F})([N^2, p]) = e(p^*(T\mathcal{F}))([N^2]) = I_P - I_N.$$
(3)

Harmonic maps to the circle

Stern - 2019
Let
$$u: M \to S^1$$
 be a harmonic map representing the class
 $[u] \in [M, S^1] \cong H^1(M; \mathbb{Z}) \stackrel{PD}{\cong} H_2(M; \mathbb{Z}).$ Then

$$2\pi \int_{\theta \in S^1} \chi(\Sigma_{\theta \in S^1}) \geq \frac{1}{2} \int_{\theta \in S^1} \int_{\Sigma_{\theta}} (|du|^{-2} |Hess(u)|^2 + R_M), \quad (4)$$

where $\Sigma_{\theta} = u^{-1}\theta$, $\theta \in S^1 = \mathbb{R}/\mathbb{Z}$ is a regular value of u, and R_M is the scalar curvature of M.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark that $u^*d\theta$ is a harmonic 1-form on M corresponding to integer class [u] in $H^1(M, \mathbb{R})$.

Jeffrey F. Brock and Nathan M. Dunfield -2017 1) For all closed orientable hyperbolic 3-manifolds *M* one has

$$\frac{\pi}{\sqrt{\operatorname{Vol}(M)}}||\cdot||_{\tau_h} \leq ||\cdot||_{L^2} \leq \frac{10\pi}{\sqrt{\operatorname{inj}(M)}}||\cdot||_{\tau_h},$$

This norms are supposed on $H^1(M; \mathbb{R})$. 2) If α is a harmonic 1-form $(d\alpha = \delta \alpha = 0)$ on a close hyperbolic 3-manifold then

$$||\alpha||_{L^{\infty}} \leq \frac{5}{\sqrt{\textit{inj}(M)}} ||\alpha||_{L^2}$$

Recall

$$\begin{split} ||\alpha||_{L^2} &= \sqrt{\int_M \alpha \wedge *\alpha} = \sqrt{\int_M |\alpha|^2} \\ &||\alpha||_{L^{\infty}} = \max_{p \in M} |\alpha_p| \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Some intermediate results

Theorem

Let M be a closed oriented hyperbolic 3-Manifold and \mathcal{F} be a two-dimensional transversely oriented foliation \mathcal{F} whose leaves have the modulus of mean curvature bounded above by the fixed positive constant H_0 . For each harmonic map $u : M \to S^1$ there exists a regular value $\theta \in S^1 = \mathbb{R}/\mathbb{Z}$ such that:

- $\chi_{-}(\Sigma_{\theta}) \leq C_1(\operatorname{Vol}(M), \operatorname{inj}(M), H_0)||[\Sigma_{\theta}]||_{Th};$
- the number of intersection circles

$$\Sigma_{ heta} \cap \bigsqcup_{k}^{p} T_{k}^{2},$$

which can represent the so-called "vanishing cycles" according to Novikov, does not exceed the constant $C_2(Vol(M), inj(M), H_0)||[\Sigma_{\theta}]||_{Th}$,

where $\Sigma_{\theta} = u^{-1}\theta$ and T_k^2 , k = 1, ..., p, be tori bounded the Reeb components of \mathcal{F} .

Theorem

Let M be a closed oriented irreducible 3-Manifold with sectional curvature $K \leq K_0 \geq 0$ and \mathcal{F} be a two-dimensional transversely oriented foliation \mathcal{F} whose leaves have the modulus of mean curvature bounded above by the fixed positive constant H_0 . The number of Reeb components of the foliation \mathcal{F} does not exceed $\frac{4H_0 Vol(M)}{\sqrt{3}C_0^2}$, where

$$C_0 := \left\{ \begin{array}{ll} 2\min\{\min\{inj(M), \frac{\pi}{2\sqrt{K_0}}\}, \frac{1}{\sqrt{K_0}} \arccos \frac{H_0}{\sqrt{K_0}}\}, & \text{if } K_0 > 0\\ 2\min\{inj(M), \frac{1}{H_0}\}, & \text{if } K_0 = 0 \end{array} \right\}$$

In the case
$$K \equiv -1$$
 and $H_0 > 1$,
 $C_0 = 2 \min\{inj(M), (\operatorname{coth})^{-1}(H_0)\}.$

The geometric meaning of the constant C_0 is that it is the systole $sys(\mathcal{F})$ of the foliation \mathcal{F} if the set of essential integral loops (that is, loops belonging to some fiber \mathcal{F} and not contractible inside it) is non-empty.

Thank you for your attention!

・ロト・日本・ヨト・ヨー うへの