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Albert Nijenhuis

Albert Nijenhuis (November 21, 1926 – February 13, 2015),

Dutch-American mathematician who specialised in di↵erential geometry
and the theory of deformations in algebra and geometry, and later worked
in combinatorics.

Alma mater: University of Amsterdam

Doctoral advisor: Prof. Jan Arnoldus Schouten
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What is GEOMETRY?

Space, manifold Mn + Structure

Structure is usually
defined by means of
a tensor, like
gij , !ij , or P ij

Naively, in coordinates, the geometric structure is defined by means of a

matrix A =
⇣
aij(x)

⌘
whose entries depend on coordinates

x = (x1, . . . , xn) and satisfy some algebraic and di↵erential conditions.



Nijenhuis geometry. Our motivation

Definition

By Nijenhuis operators we understand (1, 1)-tensors L =
�
Lij(x)

�
with

vanishing Nijenhuis torsion:

NL(⇠, ⌘) = L2[⇠, ⌘] + [L⇠, L⌘]� L[L⇠, ⌘]� L[⇠, L⌘] = 0.

A manifold M endowed with such an operator it is called a Nijenhuis
manifold.

Motivation
I Riemannian, Kähler, symplectic, Poisson... Nijenhuis geometry is

the next natural candidate to continue this list.
I In the context of the bi-Hamiltonian formalism, Nijenhuis operators

occur as recursion operators.
I In the theory of integrable geodesic flows, projectively equivalent

Riemannian metrics are related by means of a Nijenhuis operator.
I In topology of integrable systems, singularities of Lagrangian

fibrations related to bi-Hamiltonian systems correspond to singular
points of the corresponding Nijenhuis recursion operators.

I In integrable systems on Lie algebras, algebraic Nijenhuis operators
are used in the study of Lie-Poisson pencils.



Elementary examples

I Constant operator:

L(x) =
⇣
Lij

⌘

with Lij being constant for all i , j

I Scalar operator:
L(x) = f (x) · Id,

where f (x) is an arbitrary smooth function

I Complex structure

I L(x) =

0
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Nijenhuis Geometry

Definition and simplest properties
Haantjes Theorem
Nirenberg–Newlander Theorem
Thompson Theorem

Splitting Theorem
gl-regular Nijenhuis operators
Singular points and stability

Normal forms
Left-symmetric algebras
Linearisation problem
Global issues, examples and obstructions
Nijenhuis pencils
Nijenhuis cohomologies

Integration of quasilinear PDEs
Applications



Research agenda

The ultimate goal of our research programme is to answer three
fundamental questions:

(A) Local description: to what form can one bring a Nijenhuis
operator near almost every point by a local coordinate change?

(B) Singular points: what does it mean for a point to be generic or
singular in the context of Nijenhuis geometry? What singularities are
non-degenerate/stable? How do Nijenhuis operators behave near
non-degenerate and stable singular points?

(C) Global properties: what restrictions on a Nijenhuis operator are
imposed by the topology of the underlying manifold? And
conversely, what are topological obstructions to a Nijenhuis manifold
carrying a Nijenhuis operator with specific properties?

as well as to work on

(D) Applications of Nijenhuis Geometry: in geometry, algebra and
mathematical physics



Fundamental property of the characteristic polynomial of a

Nijenhuis operator

Here and below L denotes a Nijenhuis operator.

Theorem

Let �1, . . . ,�n be the coe�cients of the characteristic polynomial of L:

�(t) = det(t · Id�L(x)) = tn �
nX

k=1

�k(x) t
n�k .

Then in any local coordinate system x1, . . . , xn the following matrix
relation hold:

J(x) L(x) = S�(x) J(x), where S�(x) =

0

BBB@

�1(x) 1
... 0

. . .

�n�1(x)
...

. . . 1
�n(x) 0 . . . 0

1
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and J(x) =
⇣

@�i
@xj

⌘
is the Jacobi matrix of the collection of functions

�1, . . . ,�n w.r.t. local coordinates x1, . . . , xn.



Two corollaries

Corollary

Assume that the coe�cients of the characteristic polynomial of L are
functionally independent almost everywhere on M. Then L can be
uniquely reconstructed from them:

L(x) = J�1(x)S�(x)J(x).

Corollary

Assume that the coe�cients of the characteristic polynomial of L are
functionally independent in a neighbourhood of a point p 2 M (i.e.,
det J(x) 6= 0) 1. Then there exists a local coordinate system u1, . . . , un

in which L takes the following form

L(u) =

0

BBB@
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1Such points are called di↵erentially non-degenerate.



Left-symmetric algebras and linearisation

Consider an operator L =
⇣
aijkx

k
⌘
whose components are linear functions

in coordinates x1, . . . , xn.

Observation. L is Nijenhuis if and only if aijk are structure constants of
a left-symmetric algebra.

Reminder: An algebra (a, ⇤) is called left-symmetric (or pre-Lie) if:

⇠ ⇤ (⌘ ⇤ ⇣)� (⇠ ⇤ ⌘) ⇤ ⇣ = ⌘ ⇤ (⇠ ⇤ ⇣)� (⌘ ⇤ ⇠) ⇤ ⇣, for all ⇠, ⌘, ⇣ 2 a.

Linearisation of a Nijenhuis operator at a singular point. Let L be
a Nijenhuis operator in a neighbourhood of a point q 2 M such that
L(q) = 0. In local coordinates x = (x1, . . . , xn), centred at q, we can
expand L(x) into Taylor series:

L(x) = 0 + L1(x) + L2(x) + . . .

where Lk is homogeneous of degree k in x1, . . . , xn.
Then the first term L1 = Llin defines a Nijenhuis operator in variables
x1, . . . , xn, called the linearisation of L at q.
Conclusion:
Left symmetric algebras $ linearisations of Nijenhuis structures



Linearisability and non-degenerate LSA and Lie algebras

Definition

A left-symmetric algebra a is non-degenerate if every Nijenhuis operator
L such that Llin ' a, is linearisable, i.e., L is isomorphic to Llin.

Theorem (A. Konyaev)

In dimension two, there are 12 types of real LSAs, six of which are
non-degenerate in the smooth sense (with parameters appropriately
chosen). In the real analytic case, the list of non-degenerate LSAs is
di↵erent (slightly larger).

Theorem (Real analytic or formal)

Let L(x) = Llin(x) + . . . with

Llin(x) = diag (x1, x2, . . . , xn).

Then L(x) is linearisable, i.e., the diagonal LSA is non-degenerate.
In other words, there exists a real analytic (formal) change of variables
x 7! y such that in the new coordinates

L(y) = diag (y1, y2, . . . , yn).



Regular Nijenhuis manifolds

Definition

An operator L is called gl-regular, if each eigenvalue of L possesses only
one eigenvector (up to proportionality). Equivalently, the operators
Id, L, L2, . . . , Ln�1 are linearly independent.

Question: What is a local structure of a gl-regular Nijenhuis manifold?

Theorem (Real analytic case)

Let L be a gl-regular Nijenhuis operator. Then there exist local
coordinate systems u = (u1, . . . , un) and v = (v1, . . . , vn) in which L
reduces to the first and second companion forms:

L(u) =

0
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and L(v) =

0
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where �i are the coe�cients of the characteristic polynomial of L in the
corresponding coordinate system.



Some global results

Theorem

A Nijenhuis operator on a closed connected manifold cannot have
non-constant complex eigenvalues.

Theorem

A Nijenhuis operator on a closed connected manifold cannot have
di↵erentially non-degenerate critical points.

Theorem

1. Let M2 be an orientable closed surface and M2 6' T2 (torus).
Then on M2 there are no gl-regular Nijenhuis operators except for
L = ↵ Id+�J, where J is a complex structure and ↵,� 2 R, � 6= 0.

2. Let M2 be a non-orientable closed surface and M2 6' K2 (Klein
bottle).
Then on M2 there are no gl-regular Nijenhuis operators at all.



Applications to geodesically equivalent metrics

Two (pseudo)-Riemannian metrics g and ḡ are called geodesically
equivalent if they share the same (unparametrised) geodesics.

Observation (Sinjukov). A manifold endowed with a pair of such metrics
carries a natural Nijenhuis structure defined by the operator

L =

����
det ḡ

det g

����

1
n+1

ḡ�1g .

The geodesic equivalence condition in terms of L:

r⇠L = 1
2

�
u ⌦ d tr L+ (u ⌦ d tr L)⇤

�
.

Here L serves as a partner of the metric g : we say that g and L are
geodesically compatible, if this relation holds.

Important open problem. What happens at singular points (i.e., at those
where the algebraic type of L changes, e.g., the eigenvalues of L collide)?
Which singularities are allowed?



Theorem

Let L be a gl-regular real analytic Nijenhuis operator. Then (locally)
there exists a pseudo-Riemannian metric g that is geodesically
compatible with L. Moreover, such a metric g can be defined explicitly in
terms of the second companion form of L.

Recall that an operator M is called a symmetry of L if these operators
commute in algebraic sense, i.e. ML = LM, and the following relation
holds:

M[L⇠, ⇠] + L[⇠,M⇠]� [L⇠,M⇠] = 0 for any vector field ⇠.

A symmetry M is called strong if

hL,Mi(⇠, ⌘) def
= M[L⇠, ⌘] + L[⇠,M⌘]� [L⇠,M⌘]� LM[⇠, ⌘] = 0 for all ⇠, ⌘.

Theorem

Let L and g be geodesically compatible. Assume that M is g -self-adjoint
and is a strong symmetry of L, then L and gM are geodesically
compatible.
Moreover, if L is gl-regular, then every metric g̃ geodesically compatible
with L is of the form g̃ = gM, where M is a (strong) symmetry of L.



Open problems

I Describe the topology of closed gl-regular Nijenhuis manifolds.

I Construct real analytic examples of Nijenhuis operators on closed
two-dimensional surfaces whose eigenvalues are real and generically
distinct.

I Describe/classify maximal Nijenhuis pencils.

I Local classification of gl-regular Nijenhuis operators.

I Classify left-symmetric algebras of low dimension.

I Find/construct examples of non-degenerate LSAs of arbitrary
dimension.

I Describe/classify LSAs with algebraically independent coe�cients of
the characteristic polynomial.

I etc.

AB, V. Matveev, E. Miranda, S. Tabachnikov, Open Problems,
Questions, and Challenges in Finite-Dimensional Integrable Systems, Phil.
Trans. R. Soc. A (2018) 376: 20170430, arXiv:1804.03737.
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