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Theorem (O.V. Pogorelov, M. do Carmo and K.K. Peng,
D. Fischer-Colbrie and R. Schoen, [1])
A complete connected minimal surface in the three-dimensional
Euclidean space is stable if and only if it is a plane.
This result generalizes the classical theorem of S.N. Bernstein
which states that any complete minimal graph is a plane. The
notion of a minimal surface in a sub-Riemannian manifold was
introduced in [2]. Such surfaces and their stability were studied for
various sub-Riemannian geometries (a short survey is in [4]).
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A sub-Riemannian manifold is a smooth manifold M together with
a completely non-integrable smooth distribution H on M (it is
called a horizontal distribution) and a smooth field of Euclidean
scalar products ⟨·, ·⟩H on H (it is called a sub-Riemannian metric).
Example: three-dimensional Heisenberg group H1. This is the space
R3 with coordinates (x , y , z) and with the following basis of
left-invariant vector fields defined by the Lie group structure:

X1 =
∂

∂x
− y

∂

∂z
,X2 =

∂

∂y
+ x

∂

∂z
,X3 =

∂

∂z
.

Let ⟨·, ·⟩ be a Riemannian metric on H1 such that {X1,X2,X3} is
an orthonormal frame. Then the horizontal distribution H is
spanned by {X1,X2} and the sub-Riemannian metric ⟨·, ·⟩H is the
restriction of ⟨·, ·⟩ to H.
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Let Σ be a smooth oriented surface in a three-dimensional
sub-Riemannian manifold M, whose sub-Riemannian metric ⟨·, ·⟩H
is a restriction of some Riemannian metrics on M to H. The
singular set Σ0 of this surface consists of points p ∈ Σ such that
the tangent plane TpΣ = Hp. If N is the unit normal field Σ in the
Riemannian sense, then the singular set can be described as

Σ0 = {p ∈ Σ | Nh(p) = 0},

where Nh denotes the orthogonal projection of N onto H.
The sub-Riemannian area of a domain D ⊂ Σ is

A(D) =

∫
D

|Nh| dΣ,

where dΣ is the Riemannian area form of Σ.
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The normal variation of the surface Σ defined by a smooth
function u is the map

φ : Σ× I → M : φs(p) = expp(su(p)N(p)),

where I is an open neighborhood of 0 in R and expp is the
Riemannian exponential map in p. In other words, we construct the
variation in the traditional Riemannian way by drawing the geodesic
through each point p ∈ Σ in the direction of the normal vector
u(p)N(p). Denote

A(s) =

∫
Σs

|Nh| dΣs ,

where Σs = φs(Σ). Then A′(0) is called the first (normal) area
variation defined by φ, and A′′(0) is called the second one.
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A surface Σ is called minimal if A′(0) = 0 for any normal variations
with compact support in Σ \ Σ0.
Note that here we also follow the Riemannian tradition by defining
minimal surfaces as stationary points of the sub-Riemannian area
functional.
A minimal surface Σ is called stable if A′′(0) ≥ 0 for any normal
variations with compact support in Σ \ Σ0.
The following Bernstein type result is known for H1:

Theorem (A. Hurtado, M. Ritoré, C. Rosales, [3])
A complete connected minimal surface with the empty singular set
in the sub-Riemannian three-dimensional Heisenberg group is stable
if and only if it is a vertical Euclidean plane.
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The manifold Ẽ (2) is the universal covering of the proper motions
group of the Euclidean plane. This is the space R3 with coordinates
(x , y , z) (where (x , y) and z correspond to the translation vector
and the rotation angle respectively) and with the following basis of
left-invariant vector fields defined by the Lie group structure:

X1 = cos z
∂

∂x
+ sin z

∂

∂y
,X2 =

∂

∂z
,X3 = sin z

∂

∂x
− cos z

∂

∂y
.

Let ⟨·, ·⟩ be a Riemannian metric on Ẽ (2) such that {X1,X2,X3} is
an orthonormal frame. Note that it is Euclidean. Then the
horizontal distribution H is spanned by {X1,X2} and the
sub-Riemannian metric ⟨·, ·⟩H is the restriction of the Euclidean
metric ⟨·, ·⟩ to H.
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Now let Σ be a smooth oriented surface in Ẽ (2). Let us introduce
some additional notation.
The horizontal Gauss map νh = Nh

|Nh| is defined on the regular part
Σ \ Σ0 of Σ. The characteristic vector field Z is the right angle
rotation of νh in Hp (in the orientation defined by N(p)) and is also
defined on Σ \ Σ0. Denote S = ⟨N,X3⟩ νh − |Nh|X3 ∈ TpΣ. The
vector fields Z and S then form an orthonormal frame on Σ \ Σ0.
Let ∇ denote the Riemannian covariant derivative, and B denote
the Weingarten operator of Σ with respect to N that is defined by
B(W ) = −∇WN for any tangent vector field W on Σ.



Stability of minimal surfaces in the sub-Riemannian manifold Ẽ(2)

Theorem (First and second variation formulae)
Let Σ be a surface in Ẽ (2). Then its first normal area variation
defined by a smooth function u with compact support equals

A′(0) =

∫
Σ\Σ0

|Nh|−1 (−⟨B(Z ),Z ⟩+ ⟨N,X3⟩⟨∇νhX3, νh⟩) u dΣ.

If Σ is minimal, then its normal area variation defined by a smooth
function u with compact support equals

A′′(0) =

∫
Σ\Σ0

−2|Nh| ⟨B(Z ),S⟩2 u2+2|Nh| ⟨B(Z ),Z ⟩ ⟨B(S), S⟩ u2+

+2|Nh| ⟨B(Z ),Z ⟩ u2(⟨B(S), S⟩+ ⟨B(Z ),Z ⟩)−

−2 ⟨N,X3⟩ ⟨B(S),Z ⟩Z (u)u+|Nh|−1(Z (u)+⟨N,X3⟩ |Nh| ⟨∇νhX3,Z ⟩ u)2−

−2|Nh|2 ⟨∇νhX3, νh⟩ u − |Nh|3 ⟨∇νhX3, νh⟩2 u2 dΣ.
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Corollary (Minimality criterion)
A surface Σ in Ẽ (2) is minimal if and only if

⟨B(Z ),Z ⟩ − ⟨N,X3⟩ ⟨∇νhX3, νh⟩ = 0.

Proposition
A Euclidean plane in Ẽ (2) is minimal if and only if it is a horizontal
or vertical plane. All minimal Euclidean planes in Ẽ (2) are stable.
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Corollary (Minimality criterion for graphs)
Let a surface in Ẽ (2) be defined by the equation y = f (x , z). It is
minimal if and only if

− cos2 z f 2z fxx + (2 cos2 z fx fz − sin2 zfz)fxz+

+(− cos2 z f 2x + sin2 z fx − sin2 z)fzz−

− cos z sin z f 2x fz + (− cos2 z + sin2 z)fx fz + sin z cos z fz = 0.

Some non-planar solutions are y = A cos z + B and
y = x + A(sin z + cos z) + B , where A,B ∈ R. Similar equations
can be written for x = f (y , z) and z = f (x , y).
Thus, the minimality of a surface in the Riemannian sense does not
imply its sub-Riemannian minimality, and vice versa.
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We will call a surface Σ in a three-dimensional sub-Riemannian
manifold vertical if TpΣ ⊥ Hp for each p ∈ Σ. In particular, such
surfaces do not contain singular points.

Theorem
Any complete connected vertical minimal surface in Ẽ (2) is either a
horizontal Euclidean plane z = C or a standard helicoid
x cosz + y sin z = 0 translated parallelly along the (x , y)-plane.
Helicoids are unstable.
From this we obtain the following partial Bernstein type result:

Corollary
A complete connected vertical minimal surface in Ẽ (2) is stable if
and only if it is a horizontal Euclidean plane.
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Proof. For any vertical surface ⟨N,X3⟩ = 0 and |Nh| = 1, thus
S = −X3, so this surface consists of integral trajectories of X3.
They are Euclidean straight lines with direction vectors
(sin z , cos z , 0). Therefore, the surface is ruled and can be
parameterized locally as

r(ρ, φ) = (x(φ), y(φ), z(φ)) + ρ(sin z(φ),− cos z(φ), 0),

where (x , y , z) is a naturally parameterized integral trajectory of
the field S , so the condition x ′ sin z − y ′ cos z = 0 holds. For
vertical surfaces the minimality criterion has the form
⟨B(Z ),Z ⟩ = 0, thus for our surface

(z ′′x ′ − z ′x ′′) cos z + (z ′′y ′ − z ′y ′′) sin z = 0.

We get the required classes of surfaces by solving this equation.
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For vertical surfaces the second variation formula can be
rewritten as

A′′(0) =

∫
Σ

Z (u)2+(−2 ⟨B(Z ),S⟩2+⟨B(Z ), S⟩ (1−2 ⟨νh,X1⟩2))u2 dΣ.

For the parameterization

r(ρ, φ) = (ρ sinφ,−ρ cosφ,φ)

of the helicoid we have

A′′(0) =

∫
Σ

1

1 + ρ2
(u2φ − u2)

√
1 + ρ2 dρdφ.

Then A′′(0) < 0 for u = cos ρ(cosφ+
√
2
2 ), ρ ∈

[
−π

2 ,
π
2

]
,

φ ∈
[
−3π

4 , 3π4
]
.
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Thank you!

Дякую за увагу!
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