# Stability of minimal surfaces in the sub-Riemannian manifold $E(2)$ 

Ihor Gavrylenko, Eugene Petrov

V.N. Karazin Kharkiv National University

May 31, 2023

Theorem (O.V. Pogorelov, M. do Carmo and K.K. Peng, D. Fischer-Colbrie and R. Schoen, [1])

A complete connected minimal surface in the three-dimensional Euclidean space is stable if and only if it is a plane.
This result generalizes the classical theorem of S.N. Bernstein which states that any complete minimal graph is a plane. The notion of a minimal surface in a sub-Riemannian manifold was introduced in [2]. Such surfaces and their stability were studied for various sub-Riemannian geometries (a short survey is in [4]).

A sub-Riemannian manifold is a smooth manifold $M$ together with a completely non-integrable smooth distribution $\mathcal{H}$ on $M$ (it is called a horizontal distribution) and a smooth field of Euclidean scalar products $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ on $\mathcal{H}$ (it is called a sub-Riemannian metric). Example: three-dimensional Heisenberg group $\mathbb{H}^{1}$. This is the space $\mathbb{R}^{3}$ with coordinates $(x, y, z)$ and with the following basis of left-invariant vector fields defined by the Lie group structure:

$$
X_{1}=\frac{\partial}{\partial x}-y \frac{\partial}{\partial z}, x_{2}=\frac{\partial}{\partial y}+x \frac{\partial}{\partial z}, x_{3}=\frac{\partial}{\partial z}
$$

Let $\langle\cdot, \cdot\rangle$ be a Riemannian metric on $\mathbb{H}^{1}$ such that $\left\{X_{1}, X_{2}, X_{3}\right\}$ is an orthonormal frame. Then the horizontal distribution $\mathcal{H}$ is spanned by $\left\{X_{1}, X_{2}\right\}$ and the sub-Riemannian metric $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ is the restriction of $\langle\cdot, \cdot\rangle$ to $\mathcal{H}$.

Let $\Sigma$ be a smooth oriented surface in a three-dimensional sub-Riemannian manifold $M$, whose sub-Riemannian metric $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ is a restriction of some Riemannian metrics on $M$ to $\mathcal{H}$. The singular set $\Sigma_{0}$ of this surface consists of points $p \in \Sigma$ such that the tangent plane $T_{p} \Sigma=\mathcal{H}_{p}$. If $N$ is the unit normal field $\Sigma$ in the Riemannian sense, then the singular set can be described as

$$
\Sigma_{0}=\left\{p \in \Sigma \mid N_{h}(p)=0\right\}
$$

where $N_{h}$ denotes the orthogonal projection of $N$ onto $\mathcal{H}$. The sub-Riemannian area of a domain $D \subset \Sigma$ is

$$
A(D)=\int_{D}\left|N_{h}\right| d \Sigma
$$

where $d \Sigma$ is the Riemannian area form of $\Sigma$.

The normal variation of the surface $\Sigma$ defined by a smooth function $u$ is the map

$$
\varphi: \Sigma \times I \rightarrow M: \varphi_{s}(p)=\exp _{p}(s u(p) N(p))
$$

where $I$ is an open neighborhood of 0 in $\mathbb{R}$ and $\exp _{p}$ is the Riemannian exponential map in $p$. In other words, we construct the variation in the traditional Riemannian way by drawing the geodesic through each point $p \in \Sigma$ in the direction of the normal vector $u(p) N(p)$. Denote

$$
A(s)=\int_{\Sigma_{s}}\left|N_{h}\right| d \Sigma_{s},
$$

where $\Sigma_{s}=\varphi_{s}(\Sigma)$. Then $A^{\prime}(0)$ is called the first (normal) area variation defined by $\varphi$, and $A^{\prime \prime}(0)$ is called the second one.

A surface $\Sigma$ is called minimal if $A^{\prime}(0)=0$ for any normal variations with compact support in $\Sigma \backslash \Sigma_{0}$.
Note that here we also follow the Riemannian tradition by defining minimal surfaces as stationary points of the sub-Riemannian area functional.
A minimal surface $\Sigma$ is called stable if $A^{\prime \prime}(0) \geq 0$ for any normal variations with compact support in $\Sigma \backslash \Sigma_{0}$.
The following Bernstein type result is known for $\mathbb{H}^{1}$ :
Theorem (A. Hurtado, M. Ritoré, C. Rosales, [3])
A complete connected minimal surface with the empty singular set in the sub-Riemannian three-dimensional Heisenberg group is stable if and only if it is a vertical Euclidean plane.

The manifold $\widetilde{E(2)}$ is the universal covering of the proper motions group of the Euclidean plane. This is the space $\mathbb{R}^{3}$ with coordinates $(x, y, z)$ (where $(x, y)$ and $z$ correspond to the translation vector and the rotation angle respectively) and with the following basis of left-invariant vector fields defined by the Lie group structure:

$$
X_{1}=\cos z \frac{\partial}{\partial x}+\sin z \frac{\partial}{\partial y}, X_{2}=\frac{\partial}{\partial z}, X_{3}=\sin z \frac{\partial}{\partial x}-\cos z \frac{\partial}{\partial y}
$$

Let $\langle\cdot, \cdot\rangle$ be a Riemannian metric on $\widetilde{E(2)}$ such that $\left\{X_{1}, X_{2}, X_{3}\right\}$ is an orthonormal frame. Note that it is Euclidean. Then the horizontal distribution $\mathcal{H}$ is spanned by $\left\{X_{1}, X_{2}\right\}$ and the sub-Riemannian metric $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ is the restriction of the Euclidean metric $\langle\cdot, \cdot\rangle$ to $\mathcal{H}$.

Now let $\Sigma$ be a smooth oriented surface in $\widetilde{E(2)}$. Let us introduce some additional notation.
The horizontal Gauss map $\nu_{h}=\frac{N_{h}}{\left|N_{h}\right|}$ is defined on the regular part $\Sigma \backslash \Sigma_{0}$ of $\Sigma$. The characteristic vector field $Z$ is the right angle rotation of $\nu_{h}$ in $\mathcal{H}_{p}$ (in the orientation defined by $N(p)$ ) and is also defined on $\Sigma \backslash \Sigma_{0}$. Denote $S=\left\langle N, X_{3}\right\rangle \nu_{h}-\left|N_{h}\right| X_{3} \in T_{p} \Sigma$. The vector fields $Z$ and $S$ then form an orthonormal frame on $\Sigma \backslash \Sigma_{0}$. Let $\nabla$ denote the Riemannian covariant derivative, and $B$ denote the Weingarten operator of $\Sigma$ with respect to $N$ that is defined by $B(W)=-\nabla_{W} N$ for any tangent vector field $W$ on $\Sigma$.

Theorem (First and second variation formulae)
Let $\Sigma$ be a surface in $\widetilde{E(2)}$. Then its first normal area variation defined by a smooth function $u$ with compact support equals

$$
A^{\prime}(0)=\int_{\Sigma \backslash \Sigma_{0}}\left|N_{h}\right|^{-1}\left(-\langle B(Z), Z\rangle+\left\langle N, X_{3}\right\rangle\left\langle\nabla_{\nu_{h}} X_{3}, \nu_{h}\right\rangle\right) u d \Sigma .
$$

If $\Sigma$ is minimal, then its normal area variation defined by a smooth function $u$ with compact support equals

$$
\begin{aligned}
& A^{\prime \prime}(0)=\int_{\Sigma \backslash \Sigma_{0}}-2\left|N_{h}\right|\langle B(Z), S\rangle^{2} u^{2}+2\left|N_{h}\right|\langle B(Z), Z\rangle\langle B(S), S\rangle u^{2}+ \\
& \quad+2\left|N_{h}\right|\langle B(Z), Z\rangle u^{2}(\langle B(S), S\rangle+\langle B(Z), Z\rangle)- \\
& -2\left\langle N, X_{3}\right\rangle\langle B(S), Z\rangle Z(u) u+\left|N_{h}\right|^{-1}\left(Z(u)+\left\langle N, X_{3}\right\rangle\left|N_{h}\right|\left\langle\nabla_{\nu_{h}} X_{3}, Z\right\rangle u\right)^{2}- \\
& \quad-2\left|N_{h}\right|^{2}\left\langle\nabla_{\nu_{h}} X_{3}, \nu_{h}\right\rangle u-\left|N_{h}\right|^{3}\left\langle\nabla_{\nu_{h}} X_{3}, \nu_{h}\right\rangle^{2} u^{2} d \Sigma .
\end{aligned}
$$

## Corollary (Minimality criterion)

A surface $\Sigma$ in $\widetilde{E(2)}$ is minimal if and only if

$$
\langle B(Z), Z\rangle-\left\langle N, X_{3}\right\rangle\left\langle\nabla_{\nu_{h}} X_{3}, \nu_{h}\right\rangle=0 .
$$

Proposition
A Euclidean plane in $E(2)$ is minimal if and only if it is a horizontal or vertical plane. All minimal Euclidean planes in $\overline{E(2)}$ are stable.

## Corollary (Minimality criterion for graphs)

Let a surface in $\widetilde{E(2)}$ be defined by the equation $y=f(x, z)$. It is minimal if and only if

$$
\begin{gathered}
-\cos ^{2} z f_{z}^{2} f_{x x}+\left(2 \cos ^{2} z f_{x} f_{z}-\sin ^{2} z f_{z}\right) f_{x z}+ \\
+\left(-\cos ^{2} z f_{x}^{2}+\sin ^{2} z f_{x}-\sin ^{2} z\right) f_{z z}-
\end{gathered}
$$

$-\cos z \sin z f_{x}^{2} f_{z}+\left(-\cos ^{2} z+\sin ^{2} z\right) f_{x} f_{z}+\sin z \cos z f_{z}=0$.
Some non-planar solutions are $y=A \cos z+B$ and $y=x+A(\sin z+\cos z)+B$, where $A, B \in \mathbb{R}$. Similar equations can be written for $x=f(y, z)$ and $z=f(x, y)$.
Thus, the minimality of a surface in the Riemannian sense does not imply its sub-Riemannian minimality, and vice versa.

We will call a surface $\Sigma$ in a three-dimensional sub-Riemannian manifold vertical if $T_{p} \Sigma \perp \mathcal{H}_{p}$ for each $p \in \Sigma$. In particular, such surfaces do not contain singular points.

## Theorem

Any complete connected vertical minimal surface in $\widetilde{E(2)}$ is either a horizontal Euclidean plane $z=C$ or a standard helicoid $x \cos z+y \sin z=0$ translated parallelly along the ( $x, y$ )-plane. Helicoids are unstable.
From this we obtain the following partial Bernstein type result:

## Corollary

A complete connected vertical minimal surface in $E(2)$ is stable if and only if it is a horizontal Euclidean plane.

Proof. For any vertical surface $\left\langle N, X_{3}\right\rangle=0$ and $\left|N_{h}\right|=1$, thus $S=-X_{3}$, so this surface consists of integral trajectories of $X_{3}$.
They are Euclidean straight lines with direction vectors $(\sin z, \cos z, 0)$. Therefore, the surface is ruled and can be parameterized locally as

$$
r(\rho, \varphi)=(x(\varphi), y(\varphi), z(\varphi))+\rho(\sin z(\varphi),-\cos z(\varphi), 0)
$$

where $(x, y, z)$ is a naturally parameterized integral trajectory of the field $S$, so the condition $x^{\prime} \sin z-y^{\prime} \cos z=0$ holds. For vertical surfaces the minimality criterion has the form $\langle B(Z), Z\rangle=0$, thus for our surface

$$
\left(z^{\prime \prime} x^{\prime}-z^{\prime} x^{\prime \prime}\right) \cos z+\left(z^{\prime \prime} y^{\prime}-z^{\prime} y^{\prime \prime}\right) \sin z=0
$$

We get the required classes of surfaces by solving this equation.

For vertical surfaces the second variation formula can be rewritten as
$A^{\prime \prime}(0)=\int_{\Sigma} Z(u)^{2}+\left(-2\langle B(Z), S\rangle^{2}+\langle B(Z), S\rangle\left(1-2\left\langle\nu_{h}, X_{1}\right\rangle^{2}\right)\right) u^{2} d \Sigma$.
For the parameterization

$$
r(\rho, \varphi)=(\rho \sin \varphi,-\rho \cos \varphi, \varphi)
$$

of the helicoid we have

$$
A^{\prime \prime}(0)=\int_{\Sigma} \frac{1}{1+\rho^{2}}\left(u_{\varphi}^{2}-u^{2}\right) \sqrt{1+\rho^{2}} d \rho d \varphi .
$$

Then $A^{\prime \prime}(0)<0$ for $u=\cos \rho\left(\cos \varphi+\frac{\sqrt{2}}{2}\right), \rho \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $\varphi \in\left[-\frac{3 \pi}{4}, \frac{3 \pi}{4}\right]$.

## Thank you!

Дякую за увагу!

䍰 D．Fischer－Colbrie，R．Schoen．The structure of complete stable minimal surface in 3－manifolds of non－negative scalar curvature．Comm．Pure Appl．Math．，33（2）：199－211， 1980.

N．Garofalo，D．－M．Nhieu．Isoperimetric and Sobolev inequalities for Carnot－Carathéodory spaces and the existence of minimal surfaces．Comm．Pure Appl．Math．，42（3）： 1081－1144， 1996.

圊 A．Hurtado，M．Ritoré，C．Rosales．The classification of complete stable area－stationary surfaces in the Heisenberg group $\mathbb{H}^{1}$ ．Adv．in Math．，224（2）：561－600， 2010.

囯 M．Ritoré，C．Rosales．Area－stationary and stable surfaces in the sub－Riemannian Heisenberg group $\mathbb{H}^{1}$ ．Matemática Contemporânea，35：185－203， 2008.

