On direct limits of Minkowski's balls, Domains, and their critical lattices

Nikolaj Glazunov

(Glushkov Institute of Cybernetics NASU, Kiev,
Institute of Mathematics and Informatics Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.)
E-mail: glanm@yahoo.com

1. Minkowski's balls

We construct direct systems of Minkowski, Davis and Chebyshev-Cohn balls and domains, direct systems of their critical lattices and calculate their direct limits. By general (Minkowski's) balls we mean (two-dimensional) balls in \mathbb{R}^{2} of the form

$$
\begin{equation*}
D_{p}:|x|^{p}+|y|^{p} \cdot p \geq 1 . \tag{1}
\end{equation*}
$$

The boundaries of the balls form a real manifold with boundary

$$
\begin{equation*}
|x|^{p}+|y|^{p}=1,1 \leq p \leq \infty . \tag{2}
\end{equation*}
$$

Denote by $V\left(D_{p}\right)$ the volume (area) of D_{p}.
Proposition 2 ([1]). The volume of Minkowski ball D_{p} is equal $4 \frac{\left(\Gamma\left(1+\frac{1}{p}\right)\right)^{2}}{\Gamma\left(1+\frac{2}{p}\right)}$.

3. Theorem on critical determinants of Minkowski's balls and their critical LATTICES

From the proof of Minkowski's conjecture $[1,2,3,4,5,8]$ in notations $[8,9]$ we have next expressions for critical determinants and their lattices:
Theorem 4. (1) $\Delta\left(D_{p}\right)=\Delta_{p}^{(0)}=\Delta\left(p, \sigma_{p}\right)=\frac{1}{2} \sigma_{p}, 2 \leq p \leq p_{0}$;
(2) $\sigma_{p}=\left(2^{p}-1\right)^{1 / p}$,

(4) $2\left(1-\tau_{p}\right)^{p}=1+\tau_{p}^{p}, 0 \leq \tau_{p}<1$,
here p_{0} is a real number that is defined unique by conditions $\Delta\left(p_{0}, \sigma_{p}\right)=\Delta\left(p_{0}, 1\right), 2,57<p_{0}<$ $2,58, p_{0} \approx 2.5725$
For their critical lattices respectively $\Lambda_{p}^{(0)}, \Lambda_{p}^{(1)}$ next conditions satisfy: $\Lambda_{p}^{(0)}$ and $\Lambda_{p}^{(1)}$ are two $D_{p^{-}}$ admissible lattices each of which contains three pairs of points on the boundary of D_{p} with the property that $(1,0) \in \Lambda_{p}^{(0)},\left(-2^{-1 / p}, 2^{-1 / p}\right) \in \Lambda_{p}^{(1)}$,

5. EXAMPLES

Example 6. Lattices $\Lambda_{p}^{(0)}$ are two-dimensional lattices in \mathbb{R}^{2} spanned by the vectors

$$
\begin{aligned}
& \lambda^{(1)}=(1,0) \\
& \lambda^{(2)}=\left(\frac{1}{2}, \frac{1}{2} \sigma_{p}\right)
\end{aligned}
$$

The lattice $\Lambda_{2}^{(1)}$ is a two-dimensional lattice in \mathbb{R}^{2} spanned by the vectors

$$
\begin{aligned}
& \lambda^{(1)}=\left(-2^{-1 / 2}, 2^{-1 / 2}\right) \\
& \lambda^{(2)}=\left(\frac{\sqrt{6}-\sqrt{2}}{4}, \frac{\sqrt{6}+\sqrt{2}}{4}\right)
\end{aligned}
$$

7. Balls and Domains

We consider balls of the form

$$
D_{p}:|x|^{p}+|y|^{p} \leq 1, p \geq 1,
$$

and call such balls with $1<p<2$ Minkowski balls. Continuing this, we consider the following classes of balls and circles.

- Davis balls: $|x|^{p}+|y|^{p} \leq 1$ for $p_{0}>p \geq 2$;
- Chebyshev-Cohn balls: $|x|^{p}+|y|^{p} \leq 1$ for $p \geq p_{0}$;

Let D be a fixed bounded symmetric about origin convex body (centrally symmetric convex body for short) with volume $V(D)$.
Proposition 8. [6]. If D is symmetric about the origin and convex, then $2 D$ is convex and symmetric about the origin.

Corollary 9. Let m be integer $m \geq 0$ and n be natural greater m. If $2^{m} D$ centrally symmetric convex body then $2^{n} D$ is again centrally symmetrc convex body.

Proof. Induction.
We consider the following classes of balls (see above) and domains.

- Minkowski domains: $2^{m} D_{p}$, integer $m \geq 1$, for $1 \leq p<2$;
- Davis domains: $2^{m} D_{p}$, integer $m \geq 1$, for $p_{0}>p \geq 2$;
- Chebyshev-Cohn domains: $2^{m} D_{p}$, integer $m \geq 1$, for $p \geq p_{0}$;

Proposition 10. Let m be integer, $m \geq 1$. If Λ is the critical lattice of the ball D_{p} than the sublattice $\Lambda_{2^{m}}$ of index 2^{m} is the critical lattice of the domain $2^{m-1} D_{p}$.

11. Direct systems

Direct systems and direct limits were defined by Pontrygin [7]. The direct system of Minkowski balls and domains has the form (3), where the multiplication by 2 is the continuous mapping

$$
\begin{equation*}
D_{p} \xrightarrow{2} 2 D_{p} \xrightarrow{2} 2^{2} D_{p} \xrightarrow{2} \cdots \xrightarrow{2} 2^{m} D_{p} \xrightarrow{2} \cdots \tag{3}
\end{equation*}
$$

The direct system of critical lattices has the form (4), where the multiplication by 2 is the homomorphism of abelian groups

$$
\begin{equation*}
\Lambda_{p} \xrightarrow{2} 2 \Lambda_{p} \xrightarrow{2} 2^{2} \Lambda_{p} \xrightarrow{2} \cdots \xrightarrow{2} 2^{m} \Lambda_{p} \xrightarrow{2} \cdots \tag{4}
\end{equation*}
$$

In our considerations we have direct systems of Minkowski balls, Minkowski domains and direct systems of critical lattices with respective maps and homomorphisms. Let \mathbb{Q}_{2} and \mathbb{Z}_{2} be respectively the field of 2 -adic numbers and its ring of integers. Denote the corresponding direct limits by $D_{p}^{\text {dirlim }}$ and by $\Lambda_{p}^{\text {dirlim }}$.
12. Direct limits

Proposition 13. $D_{p}^{\text {dirlim }}=\underset{\longrightarrow}{\lim } 2^{m} D_{p} \in\left(\mathbb{Q}_{2} / \mathbb{Z}_{2}\right) D_{p}=\left(\bigcup_{m} \frac{1}{2^{m}} \mathbb{Z}_{2} / \mathbb{Z}_{2}\right) D_{p}$.
Proposition 14. $\Lambda_{p}^{\text {dirlim }}=\underset{\longrightarrow}{\lim } 2^{m} \Lambda_{p} \in\left(\mathbb{Q}_{2} / \mathbb{Z}_{2}\right) \Lambda_{p}=\left(\bigcup_{m} \frac{1}{2^{m}} \mathbb{Z}_{2} / \mathbb{Z}_{2}\right) \Lambda_{p}$.

References

[1] H. Minkowski, Diophantische Approximationen, Leipzig: Teubner (1907).
[2] L.J. Mordell, Lattice points in the region $\left|A x^{4}+B y^{4}\right| \leq 1$, J, London Math. Soc. 16 (1941), 152-156.
[3] C. Davis, Note on a conjecture by Minkowski, J. London Math. Soc., 23, 172-175 (1948).
[4] H. Cohn, Minkowski's conjectures on critical lattices in the metric $\left\{|\xi|^{p}+|\eta|^{p}\right\}^{1 / p}$, Annals of Math., 51, (2), 734-738 (1950).
[5] G. Watson, Minkowski's conjecture on the critical lattices of the region $|x|^{p}+|y|^{p} \leq 1$, (I), (II), Jour. London Math. Soc., 28, (3, 4), 305-309, 402-410 (1953).
[6] J. W. S. Cassels, An Introduction to the Geometry of Numbers, Springer, NY (1997).
[7] L.S. Pontryagin, Select Works Volume 1, CRC Press, Boca Raton London NY (2019).
[8] N. Glazunov, A. Golovanov, A. Malyshev, Proof of Minkowski's hypothesis about the critical determinant of $|x|^{p}+$ $|y|^{p}<1$ domain , Research in Number Theory 9. Notes of scientific seminars of LOMI. 151(1986), Nauka, Leningrad, 40-53.
[9] N. Glazunov, On packing of Minkowski balls, Comptes rendus de l'Acad'emie bulgare Sci., Tome 76, No 3 (2023), 335-342.

Thank you!

