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Recall that if H is a Hilbert space and F ∈ B(H) such that ImF is closed,
then by the Banach open mapping theorem we have a decomposition

H = (ker F )⊥ ⊕ ker F F−→ ImF ⊕ (ImF )⊥ = H

with respect to which F has the matrix
[

F1 0
0 0

]
, where F1 is an

isomorphism.
A bounded linear operator F operator on H is a semi-Fredholm if ImF is
closed and either

dim ker F < ∞ or dim(ImF )⊥ < ∞.

If dim ker F < ∞, then F is called an upper semi-Fredholm operator on
H, whereas if dim(ImF )⊥ < ∞, then F is called a lower semi-Fredholm
operator on H. If F is both an upper and a lower semi-Fredholm operator
on H, then F is said to be a Fredholm operator on H.



Now, Hilbert C∗-modules are a natural generalization of Hilbert spaces
when the field of scalars is replaced by an arbitrary C∗-algebra. Fredholm
theory on Hilbert C∗-modules as a generalization of the classical
Fredholm theory on Hilbert spaces was started by Mishchenko and
Fomenko. In [MF] they introduced the notion of a Fredholm operator on
the standard Hilbert C∗-module and proved a generalization in this
setting of some of the main results from the classical Fredholm theory. In
[IS1], [IS2], [IS3], [IS4], [IS5] we went further in this direction and
defined semi-Fredholm and semi-Weyl operators on Hilbert C∗-modules.
We investigated and proved several properties of these new semi-
Fredholm operators on Hilbert C∗-modules as a generalization of the
results from the classical semi-Fredholm theory on Hilbert and Banach
spaces.



If M is a Hilbert C∗-module and M1, M2 are two closed submodules of
M, we write M = M1⊕̃M2 if M1 ∩ M2 = {0} and M1 + M2 = M.

The set of all adjointable, bounded, C∗-linear operators from M into M
will be denoted by Ba(M). It can be shown that Ba(M) is a C∗-algebra.

The standard Hilbert module over a C∗ -algebra A is l2(A) which we will
denote by HA.



Definition
[IS1] [MF] Let F ∈ Ba(HA). We say that F is an upper
semi-A-Fredholm operator if there exists a decomposition

HA = M1⊕̃N1
F−→ M2⊕̃N2 = HA

with respect to which F has the matrix[
F1 0
0 F4

]
,

where F1 is an isomorphism, M1, M2, N1, N2 are closed submodules of HA
and N1 is finitely generated. Similarly, we say that F is a lower
semi-A-Fredholm operator if all the above conditions hold except that in
this case we assume that N2 ( and not N1 ) is finitely generated.
If both N1 and N2 are finitely generated, we say that F is A-Fredholm.



We set

MΦ+(HA) = {F ∈ Ba(HA) | F is upper semi-A-Fredholm },

MΦ−(HA) = {F ∈ Ba(HA) | F is lower semi-A-Fredholm },

MΦ(HA) = {F ∈ Ba(HA) | F is A-Fredholm operator on HA}.



Breuer started the development of Fredholm theory in von-Neumann
algebras as a generalization of the classical Fredholm theory for operators
on Hilbert spaces. In [BR] and [BR2] he introduced the notion of a
Fredholm operator in a von Neumann algebra and established its main
properties as a generalization in this setting of some well-known
properties of the classical Fredholm operator on a Hilbert space.
Let us recall first the notion of Murray-Von Neumann equivalence.

Definition
[KL] Let A be an unital C∗-algebra.
In the set Proj(A) we define the equivalence relation:

p ∼ q ⇔ ∃v ∈ A vv∗ = p, v∗v = q,

i.e. Murray - von Neumann equivalence.



Definition
[BM] Let A be a von Neumann algebra, let Proj(A) be the set of all
projections belonging to A, and let Proj0(A) be the set of all finite
projections in A (i.e. those projections that are not Murray von Neumann
equivalent to any its proper subprojection).
The operator T ∈ A is said to be A-Fredholm if the following holds.
(i) Pker T ∈ Proj0(A), where Pker T is the projection to the subspace
ker T .
(ii) There is a projection E ∈ Proj0(A) such that Im(I − E ) ⊆ ImT .
The second condition ensures that P(ImT )⊥ also belongs to Proj0(A).



Kečkić and Lazović in [KL] introduced an axiomatic approach to
Fredholm theory by introducing the notion of a Fredholm type element in
a unital C*-algebra. This notion is a generalization of C*-Fredholm
operator on the standard Hilbert C*-module introduced by Mishchenko
and Fomenko and of Fredholm operator on a properly infinite von
Neumann algebra introduced by Breuer. They obtained then that the set
of Fredholm type elements in a unital C*-algebra is open in the norm
topology and invariant under perturbation by finite type elements. Also,
they proved multiplicativity of the index in the K-group and a
generalization of the Atkinson theorem.
In [IS6] we established semi-Fredholm theory in unital C*-algebras as a
continuation of the approach by Keckic and Lazovic. We introduced the
notion of a semi-Fredholm type element and semi-Weyl type element with
respect to the ideal of finite type elements in a unital C*-algebra and
obtain a generalization in this setting of several results from the classical
semi-Fredholm and semi-Weyl theory of operators on Hilbert spaces.



Definition
[KL] Let a ∈ A and p, q be projections in A. We say that a is invertible
up to pair (p, q) if there exists some b ∈ A such that

(1 − q)a(1 − p)b = 1 − q, b(1 − q)a(1 − p) = 1 − p.

We refer to such b as almost inverse of a, or (p, q)-inverse of a.

We notice that if b is a (p, q)-inverse of a, then (1 − p)b(1 − q) is also a
(p, q)-inverse of a.



Let F ∈ Ba(HA). Then F is invertible up to some pair of orthogonal
projections (P, Q) if and only if there exists a decomposition

HA = M ⊕ M⊥ F−→ N ⊕ N⊥ = HA

with respect to which F has the matrix[
F1 F2
F3 F4

]
,

where F1 is an isomorphism, M = Im(I − P) and N = Im(I − Q). It can
be shown that this equivalent to the statement that there exists a
decomposition

HA = M1⊕̃N1
F−→ M2⊕̃N2 = HA

with respect to which F has the matrix[
F1 0
0 F4

]
,

where F1 is an isomorphism.



Definition
[KL] Let A be an unital C∗-algebra, and F ⊆ A be a subalgebra which
satisfies the following conditions:
(i) F is a selfadjoint ideal in A, i.e. for all a ∈ A, b ∈ F there holds
ab, ba ∈ F , and a ∈ F implies a∗ ∈ F ;
(ii) There is an approximate unit pα in the norm topology for F
consisting of projections.
Such ideal we shall call as the ideal of finite type elements.



Let H be a separable Hilbert space and K(H) be the ideal of compact
operators in B(H). Then K(H) satisfies the conditions of the above
Definition.

Let M be a Hilbert C∗−module over a unital C∗−algebra A. We set
K∗(M) to be the closure in the norm topology of the linear span of the
operators θx ,y , where x , y ∈ M and θx ,y (z) = x < y , z > for all z ∈ M.
In [MT] the operators θx ,y are called elementary operators. The set
K∗(M) is a closed, two sided self-adjoint ideal in the C∗-algebra Ba(M),
and satisfies the conditions of the above definition in the case when
M = HA, see [MT].

Let A be a properly infinite von Neumann algebra acting on a Hilbert
space H, and let m be the norm closure of the set of all S ∈ A for which
PImS ∈ Proj0(A). Then the couple (A,m) satisfies the conditions of the
above Definition.



Definition
Let a ∈ A. We say that a is an upper semi-Fredholm element with
respect to the ideal F if a is invertible up to pair of projections (p, q)
where p ∈ F . Similarly, we say that a is a lower semi-Fredholm element
with respect to the ideal F , however in this case we assume that q ∈ F
(and not p). If both p and q belong to F , we say that a is a Fredholm
element with respect to the ideal F .

It can be proved that such upper semi-Fredholm elements correspond to
elements in A that are left invertible module the ideal F , such lower
semi-Fredholm elements correspond to elements in A that are right
invertible module the ideal F , whereas such Fredholm elements
correspond to elements in A that are invertible module the ideal F .



Theorem
[KL] Semi-A-Fredholm operators on the standard Hilbert module HA
correspond to semi-Fredholm elements in the C∗−algebra Ba(HA) with
respect to the ideal K∗(HA). Moreover, if A is a properly infinite von
Neumann algebra, then abstract Fredholm elements in A with respect to
the ideal m are generalized Fredholm operators in the sense of Breuer.

Corollary
Let A be a properly infinite von Neumann algebra. Then an operator
T ∈ A is A-Fredholm in the sense of Breuer if and only if there exist
projections P, Q ∈ Proj0(A) such that T is invertible up to (P, Q).



Definition
Let A be a properly infinite von Neumann algebra and T ∈ A. We say
that T is upper semi-A-Fredholm if there exist projections P, Q in A
such that T is invertible up to (P, Q) where P ∈ Proj0(A). Similarly we
say that T is lower semi-A-Fredholm , however in this case we assume
that Q ∈ Proj0(A).

Corollary
Let A be a properly infinite von Neumann algebra and T ∈ A. Then T is
upper (respectively lower) semi-Fredholm type element in A with respect
to m if and only if T is upper (respectively lower) semi-A-Fredholm.



Proposition
[KL] Let a ∈ A be invertible up to (p, q), and also invertible up to
(p′, q′), where p, q, p′, q′ are projections in F .Then in K (F) we have
[p] − [q] = [p′] − [q′].

Definition
[KL] Let F be the ideal of finite type elements. We say that a ∈ A is of
Fredholm type (or abstract Fredholm element) if there are projections
p, q ∈ F such that a is invertible up to (p, q). The index of the element a
(or abstract index) is the element of the group K (F) defined by

ind(a) = ([p], [q]) ∈ K (F),

or less formally
ind(a) = [p] − [q].



Let B(A) denote the set of all A - linear bounded adjointable operators
on A when A is considered as a right Hilbert module over itself. Since A
is self-dual Hilbert module over itself, by [MT] all operators that belong
to B(A) are adjointable. Moreover, by [MT] the set B(A) is a unital C∗

-algebra.
Let V be a map from A into B(A) given by V (a) = La for all a ∈ A
where La is the corresponding left multiplier by a. Then V is an isometric
*-homomorphism, and, since A is unital, it follows that V is in fact an
isomorphism. Thus, B(A) can be identified with A by considering the
left multipliers.
If F is an ideal of finite type elements in A, then it is not hard to see
that V (F) is an ideal of finite type elements in B(A), so we may identify
F with V (F).



Definition
Let F ∈ B(A). We say that F ∈ MKΦ(A) if there exists a
decomposition

A = M1⊕̃N1
F−→ M2⊕̃N2 = A

with respect to which F has the matrix
(

F1 0
0 F4

)
where F1 is an

isomorphism and PN1 , PN2 ∈ F . We put then

indexF = [PN1 ] − [PN2 ]

in K (F).
Notice that since N1 and N2 are closed and complementable, one can
show that they are orthogonally complementable, hence PN1 and PN2 are
well defined.
Moreover, one can show that this approach is equivalent to the approach
introduced above and that MKΦ -operators correspond to Fredholm
type elements in A.



Proposition
[KL] The set of Fredholm type elements is open in A and the index is a
locally constant function.
Proposition
[KL] a) Let a ∈ A be of Fredholm type, and let f ∈ F . Then a + f is
also of Fredholm type, and index (a + f ) = index a.
b) If f ∈ F , then 1 + f is of Fredholm type, and index (1 + f ) = 0.
Moreover, there is p ∈ F such that 1 + f is invertible up to (p, p).
Proposition
[KL] a) If a is of Fredholm type, then a is invertible modulo F ;
b) Conversely, if a is invertible modulo F , then a is of Fredholm type.



Theorem
[KL] (index theorem). Let A be a unital C∗-algebra, and let F ⊆ A be
an algebra of finite type elements. If t1 and t2 are Fredholm type
elements, then t1t2 is of Fredholm type as well. Moreover there holds

index (t1t2) = index t1 + index t2.

In other words, if we denote the set of all Fredholm type elements by
Fred (F ), then Fred (F) is a semigroup (with unit) with respect to
multiplication, and the mapping index is a homomorphism from
(Fred (F), ·) to (K (F), +).



Lemma
Let p ∈ F be a projection. Then the couple

((1 − p)A(1 − p), (1 − p)F(1 − p))

satisfies the conditions of the above Definition.

Corollary
Let a ∈ A and p be a projection in F . Then a is a Fredholm type
element in A with respect to the ideal F if and only if (1 − p)a(1 − p) is
a Fredholm type element in (1 − p)A(1 − p) with respect to the ideal
(1 − p)F(1 − p) and in this case index a = index (1 − p)a(1 − p).



Lemma
Let a ∈ A. Then a is an upper semi-Fredholm element if and only if a is
left invertible up to some projection p ∈ F . Similarly, a is a lower
semi-Fredholm element if and only if a is right invertible up to some
projection q ∈ F .

Corollary
Let A be a properly infinite von Neumann algebra acting on a Hilbert
space H and T ∈ A. Then T is upper semi-A-Fredholm if and only if
there exists some P ∈ Proj0(A) such that T is bounded below on
(I − P)(H). Similarly, T is lower semi-A-Fredholm if and only if there
exists some Q ∈ Proj0(A) such that (I − Q)(H) ⊆ ImT .



Lemma
[IS5] Let F ∈ Ba(M) where M is a Hilbert C∗-module and suppose that
ImF is closed. Then the following statements hold:
a) F ∈ MΦ+(M), if and only if ker F is finitely generated;
b) F ∈ MΦ−(M), if and only if ImF ⊥ is finitely generated.

Corollary
Let A be a von Neumann algebra and T ∈ A. Then the following
statements hold.
1) If T is upper semi-A-Fredhoolm, then Pker T ∈ Proj0(A). In particular,
if ImT is closed, then T is upper semi-A-Fredholm if and only if
Pker T ∈ Proj0(A).
2) If T is lower semi-A-Fredholm, then PImT ⊥ ∈ Proj0(A). In particular,
if ImT is closed, then T is lower semi-A-Fredholm if and only if
PImT ⊥ ∈ Proj0(A).



Lemma
Let a ∈ G(A) and suppose that K (F) satisfies the cancellation property
i.e. for any pair of projections p, q in F we have that p ∼ q whenever
[p] = [q]. Then for every f ∈ F we have that a + f is left invertible in A
if and only if a + f is right invertible in A.

For α ∈ A we may let αI be the operator on HA given by

αI(x1, x2, . . . ) = (αx1, αx2, . . . ).

It is straightforward to check that αI is an A-linear operator on HA.
Moreover, αI is bounded and ∥ αI ∥=∥ α ∥ . Finally, αI is adjointable
and its adjoint is given by (αI)∗ = α∗I.
We give then the following generalization of the well known Fredholm
alternative.

Corollary
Let K ∈ K∗(HA) and α ∈ G(A). Suppose that K0(A) satisfies the
cancellation property. Then the equation (K − αI) x = y has a solution
for every y ∈ HA if and only if K − αI is bounded below. In this case the
solution of the above equation is unique.



Definition
Let p, q be projections in A. We will denote p ⪯ q if there exists some
projection p′ such that p′ ≤ q and p ∼ p′.

Definition
Let a ∈ A. We say that a is an upper semi-Weyl type element with
respect to the ideal F if there exist projections p, q in A such that
p ∈ F , p ⪯ q and a is invertible up to pair (p, q). Similarly we say that a
is a lower semi-Weyl type element with respect to the ideal F , only in
this case we assume that q ∈ F and q ⪯ p. Finally, we say that a is a
Weyl type element with respect to the ideal F if a is invertible up to pair
(p, q) where p, q are projections in F and p ∼ q.



Set
KΦ+(A) = {a ∈ A | a is upper semi-Fredholm type element },
KΦ−(A) = {a ∈ A | a is lower semi-Fredholm type element },
KΦ(A) = {a ∈ A | a is Fredholm type element },
KΦ−

+(A) = {a ∈ A | a is upper semi-Weyl type element },
KΦ+

−(A) = {a ∈ A | a is lower semi-Weyl type element },
KΦ0(A) = {a ∈ A | a is Weyl type element }.
Proposition
The sets KΦ+(A), KΦ−(A), KΦ−

+(A), KΦ+
−(A), KΦ0(A),

KΦ+(A) \ KΦ−
+(A), KΦ−(A) \ KΦ+

−(A) and KΦ(A) \ KΦ0(A) are
open in the norm topology of A.



Corollary
Let f : [0, 1] → A be a continuous map such that
f ([0, 1]) ⊆ KΦ+(A) ∪ KΦ−(A).
Then the following statements hold.
1) If f (0) ∈ KΦ+(A) \ KΦ(A), then f (1) ∈ KΦ+(A) \ KΦ(A).
2) If f (0) ∈ KΦ−(A) \ KΦ(A), then f (1) ∈ KΦ−(A) \ KΦ(A).
3) If f (0) ∈ KΦ−

+(A), then f (1) ∈ KΦ−
+(A).

4) If f (0) ∈ KΦ+
−(A), then f (1) ∈ KΦ+

−(A).
5) If f (0) ∈ KΦ0(A), then f (1) ∈ KΦ0(A).
6) If f (0) ∈ KΦ+(A) \ KΦ−

+(A), then f (1) ∈ KΦ+(A) \ KΦ−
+(A).

7) If f (0) ∈ KΦ−(A) \ KΦ+
−(A), then f (1) ∈ KΦ−(A) \ KΦ+

−(A).
8) If f (0) ∈ KΦ(A) \ KΦ0(A), then f (1) ∈ KΦ(A) \ KΦ0(A).
9) If f (0) ∈ KΦ+(A), then f (1) ∈ KΦ+(A).
10) If f (0) ∈ KΦ−(A), then f (1) ∈ KΦ−(A).
11) If f (0) ∈ KΦ(A), then f (1) ∈ KΦ(A) and index f (0) = index f (1).



Corollary
Let a ∈ A. Then the following statements hold.
1) If a belongs to the boundary of KΦ(A) in A, then
a ∈ A \ KΦ+(A) ∪ KΦ−(A).
2) If a belongs to the boundary of KΦ−

+(A) in A, then a ∈ A \ KΦ+(A).
3) If a belongs to the boundary of KΦ+

−(A) in A, then a ∈ A \ KΦ−(A).
4) If a belongs to the boundary of KΦ0(A) in A, then a ∈ A \ KΦ(A).



Proposition
Let a ∈ A. Then the following holds.
1) If a ∈ KΦ−

+(A) and f ∈ F , then a + f ∈ KΦ−
+(A).

2) If a ∈ KΦ+
−(A) and f ∈ F , then a + f ∈ KΦ+

−(A).
3) If a ∈ KΦ0(A) and f ∈ F , then a + f ∈ KΦ0(A).

Lemma
Let a ∈ KΦ−

+(A) ∩ KΦ+
−(A) ∩ KΦ(A). Then there exist projections p, q

in F such that a is invertible up to (p, q), qa(1 − p) = 0, p ⪯ q and
q ⪯ p.



Proposition
Let a ∈ A. Then the following statements hold.
1) a ∈ KΦ−

+(A) if and only if there exist a left invertible element b ∈ A
and some f ∈ F such that a = b + f ,
2) a ∈ KΦ+

−(A) if and only if there exist a right invertible element b ∈ A
and some f ∈ F such that a = b + f ,
3) a ∈ KΦ0(A) if and only if there exist an invertible element b ∈ A and
some f ∈ F such that a = b + f .

Corollary
The sets KΦ−

+(A), KΦ+
−(A) and KΦ0(A) are semigroups under the

multiplication.



Definition
Let A be a properly infinite von Neumann algebra and T ∈ A. We say
that T is upper semi-A-Weyl if there exist projections P, Q in A such
that T is invertible up to (P, Q) where P ∈ Proj0(A) and P ⪯ Q.
Similarly we say that T lower semi-A-Weyl, however in this case we
assume that Q ∈ Proj0(A) and Q ⪯ P.
Finally, if P ∼ Q, we say that T is A-Weyl.

Corollary
Let A be a properly infinite von Neumann algebra and T ∈ A. Then T is
upper (respectively lower) semi-Weyl type element in A with respect to
m if and only if T is upper (respectively lower) semi-A-Weyl. Finally, T
is Weyl type element in A with respect to m if and only if T is A-Weyl.



Corollary
Let A be a properly infinite von Neumann algebra acting on a Hilbert
space H and T ∈ A. Then the following statements hold.
1) T is upper semi-A- Weyl if and only if there exist some S ∈ A and
F ∈ m such that S is bounded below and T = S + F .
2) T is lower semi-A- Weyl if and only if there exist some S ∈ A and
F ∈ m such that S is surjective and T = S + F .
3) T is A-Weyl if and only if there exist some S ∈ A and F ∈ m such
that S is invertible and T = S + F .

Corollary
Let A be a properly infinite von Neumann algebra. Then we have that
KΦ−

+(A) ∩ KΦ+
−(A) ∩ KΦ(A) = KΦ0(A).



Definition
[IS1] Let F ∈ MΦ+(HA). We say that F ∈ MΦ−

+
′(HA) if there exists a

decomposition
HA = M1⊕̃N1

F−→ M2⊕̃N2 = HA

with respect to which

F =
[

F1 0
0 F4

]
,

where F1 is an isomorphism, N1 is closed, finitely generated and
N1 ⪯ N2. Similarly, we define the class MΦ+

−
′(HA), only in this case

F ∈ MΦ−(HA), N2 is finitely generated and N2 ⪯ N1.
Such operators we will call semi-A-Weyl operators.
Further, we define MΦ0(HA) to be the set of all F ∈ MΦ(HA) for
which there exists an MΦ-decomposition

HA = M1⊕̃N1
F−→ M2⊕̃N2 = HA,

where N1 ∼= N2. Such operators we will call A-Weyl operators.



Theorem
[IS1] Let F ∈ Ba(HA). The following statements are equivalent:
1) F ∈ MΦ−

+
′(HA),

2) There exist D ∈ Ba(HA), K ∈ K∗(HA) such that D is bounded below
and F = D + K .

Corollary
[IS1] Let D ∈ Ba(HA). The following statements are equivalent:
1) D ∈ MΦ+

−
′(HA),

2) There exist a surjective operator Q ∈ Ba(HA) and K ∈ K∗(HA) such
that D = Q + K .



Theorem
Let Ba(HA). Then the following statements are equivalent:
1) F ∈ MΦ0(HA),
2) There exist an invertible D ∈ Ba(HA) and K ∈ K∗(HA) such that
F = D + K .

Lemma
Let F ∈ MΦ−′

+ (HA) ∩ MΦ+′

− (HA). Then there exists an
MΦ-decomposition

HA = M1⊕̃N1
F−→ M2⊕̃N2 = HA

for F with the property that N1 ⪯ N2 and N2 ⪯ N1.



Thank you for attention !
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