Semi-Fredholm theory in C*-algebras AGMA - conference

Stefan Ivković

Mathematical Institute of the Serbian Academy of Sciences and Arts, p.p. 367, Kneza Mihaila 36, 11000 Beograd, Serbia

June 3, 2023

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Recall that if *H* is a Hilbert space and $F \in B(H)$ such that *ImF* is closed, then by the Banach open mapping theorem we have a decomposition

$$H = (\ker F)^{\perp} \oplus \ker F \xrightarrow{F} ImF \oplus (ImF)^{\perp} = H$$

with respect to which *F* has the matrix $\begin{bmatrix} F_1 & 0 \\ 0 & 0 \end{bmatrix}$, where F_1 is an isomorphism.

A bounded linear operator F operator on H is a semi-Fredholm if ImF is closed and either

dim ker
$$F < \infty$$
 or dim $(ImF)^{\perp} < \infty$.

If dim ker $F < \infty$, then F is called an upper semi-Fredholm operator on H, whereas if dim $(ImF)^{\perp} < \infty$, then F is called a lower semi-Fredholm operator on H. If F is both an upper and a lower semi-Fredholm operator on H, then F is said to be a Fredholm operator on H.

Now, Hilbert C^* -modules are a natural generalization of Hilbert spaces when the field of scalars is replaced by an arbitrary C^* -algebra. Fredholm theory on Hilbert C^* -modules as a generalization of the classical Fredholm theory on Hilbert spaces was started by Mishchenko and Fomenko. In [MF] they introduced the notion of a Fredholm operator on the standard Hilbert C^* -module and proved a generalization in this setting of some of the main results from the classical Fredholm theory. In [IS1], [IS2], [IS3], [IS4], [IS5] we went further in this direction and defined semi-Fredholm and semi-Weyl operators on Hilbert C^* -modules. We investigated and proved several properties of these new semi-Fredholm operators on Hilbert C^* -modules as a generalization of the results from the classical semi-Fredholm theory on Hilbert and Banach spaces.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If M is a Hilbert C^* -module and M_1, M_2 are two closed submodules of M, we write $M = M_1 \oplus M_2$ if $M_1 \cap M_2 = \{0\}$ and $M_1 + M_2 = M$.

The set of all adjointable, bounded, C^* -linear operators from M into M will be denoted by $B^a(M)$. It can be shown that $B^a(M)$ is a C^* -algebra.

The standard Hilbert module over a C^* -algebra \mathcal{A} is $l^2(\mathcal{A})$ which we will denote by $H_{\mathcal{A}}$.

[IS1] [**MF**] Let $F \in B^a(H_A)$. We say that F is an upper semi-A-Fredholm operator if there exists a decomposition

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \stackrel{F}{\longrightarrow} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}}$$

with respect to which F has the matrix

$$\left[\begin{array}{cc}F_1 & 0\\ 0 & F_4\end{array}\right],$$

where F_1 is an isomorphism, M_1, M_2, N_1, N_2 are closed submodules of H_A and N_1 is finitely generated. Similarly, we say that F is a lower semi-A-Fredholm operator if all the above conditions hold except that in this case we assume that N_2 (and not N_1) is finitely generated. If both N_1 and N_2 are finitely generated, we say that F is A-Fredholm.

We set

 $\mathcal{M}\Phi_{+}(H_{\mathcal{A}}) = \{F \in B^{a}(H_{\mathcal{A}}) \mid F \text{ is upper semi-}\mathcal{A}\text{-}\mathsf{Fredholm} \},$ $\mathcal{M}\Phi_{-}(H_{\mathcal{A}}) = \{F \in B^{a}(H_{\mathcal{A}}) \mid F \text{ is lower semi-}\mathcal{A}\text{-}\mathsf{Fredholm} \},$ $\mathcal{M}\Phi(H_{\mathcal{A}}) = \{F \in B^{a}(H_{\mathcal{A}}) \mid F \text{ is }\mathcal{A}\text{-}\mathsf{Fredholm operator on } H_{\mathcal{A}} \}.$

Breuer started the development of Fredholm theory in von-Neumann algebras as a generalization of the classical Fredholm theory for operators on Hilbert spaces. In [**BR**] and [**BR2**] he introduced the notion of a Fredholm operator in a von Neumann algebra and established its main properties as a generalization in this setting of some well-known properties of the classical Fredholm operator on a Hilbert space. Let us recall first the notion of Murray-Von Neumann equivalence.

Definition

[KL] Let \mathcal{A} be an unital C^* -algebra. In the set $Proj(\mathcal{A})$ we define the equivalence relation:

$$p \sim q \Leftrightarrow \exists v \in \mathcal{A} \ vv^* = p, \ v^*v = q,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

i.e. Murray - von Neumann equivalence.

[BM] Let \mathcal{A} be a von Neumann algebra, let $Proj(\mathcal{A})$ be the set of all projections belonging to \mathcal{A} , and let $Proj_0(\mathcal{A})$ be the set of all finite projections in \mathcal{A} (i.e. those projections that are not Murray von Neumann equivalent to any its proper subprojection).

The operator $T \in A$ is said to be A-Fredholm if the following holds. (*i*) $P_{\ker T} \in Proj_0(A)$, where $P_{\ker T}$ is the projection to the subspace ker T.

(ii) There is a projection $E \in Proj_0(\mathcal{A})$ such that $Im(I - E) \subseteq ImT$. The second condition ensures that $P_{(ImT)^{\perp}}$ also belongs to $Proj_0(\mathcal{A})$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Kečkić and Lazović in **[KL]** introduced an axiomatic approach to Fredholm theory by introducing the notion of a Fredholm type element in a unital C*-algebra. This notion is a generalization of C*-Fredholm operator on the standard Hilbert C*-module introduced by Mishchenko and Fomenko and of Fredholm operator on a properly infinite von Neumann algebra introduced by Breuer. They obtained then that the set of Fredholm type elements in a unital C*-algebra is open in the norm topology and invariant under perturbation by finite type elements. Also, they proved multiplicativity of the index in the K-group and a generalization of the Atkinson theorem.

In **[IS6**] we established semi-Fredholm theory in unital C*-algebras as a continuation of the approach by Keckic and Lazovic. We introduced the notion of a semi-Fredholm type element and semi-Weyl type element with respect to the ideal of finite type elements in a unital C*-algebra and obtain a generalization in this setting of several results from the classical semi-Fredholm and semi-Weyl theory of operators on Hilbert spaces.

[KL] Let $a \in A$ and p, q be projections in A. We say that a is invertible up to pair (p, q) if there exists some $b \in A$ such that

$$(1-q)a(1-p)b = 1-q, \ b(1-q)a(1-p) = 1-p.$$

We refer to such *b* as almost inverse of *a*, or (p, q)-inverse of *a*. We notice that if *b* is a (p, q)-inverse of *a*, then (1-p)b(1-q) is also a (p, q)-inverse of *a*.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Let $F \in B^a(H_A)$. Then F is invertible up to some pair of orthogonal projections (P, Q) if and only if there exists a decomposition

$$H_{\mathcal{A}} = M \oplus M^{\perp} \xrightarrow{F} N \oplus N^{\perp} = H_{\mathcal{A}}$$

with respect to which F has the matrix

$$\begin{bmatrix} F_1 & F_2 \\ F_3 & F_4 \end{bmatrix},$$

where F_1 is an isomorphism, M = Im(I - P) and N = Im(I - Q). It can be shown that this equivalent to the statement that there exists a decomposition

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \stackrel{F}{\longrightarrow} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}}$$

with respect to which F has the matrix

$$\left[\begin{array}{cc}F_1 & 0\\ 0 & F_4\end{array}\right],$$

where F_1 is an isomorphism.

[KL] Let \mathcal{A} be an unital C^* -algebra, and $\mathcal{F} \subseteq \mathcal{A}$ be a subalgebra which satisfies the following conditions:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(i) \mathcal{F} is a selfadjoint ideal in \mathcal{A} , i.e. for all $a \in \mathcal{A}, b \in \mathcal{F}$ there holds $ab, ba \in \mathcal{F}$, and $a \in \mathcal{F}$ implies $a^* \in \mathcal{F}$;

(ii) There is an approximate unit p_{α} in the norm topology for \mathcal{F} consisting of projections.

Such ideal we shall call as the ideal of finite type elements.

Let *H* be a separable Hilbert space and $\mathcal{K}(H)$ be the ideal of compact operators in B(H). Then $\mathcal{K}(H)$ satisfies the conditions of the above Definition.

Let \mathcal{M} be a Hilbert C^* -module over a unital C^* -algebra \mathcal{A} . We set $\mathcal{K}^*(\mathcal{M})$ to be the closure in the norm topology of the linear span of the operators $\theta_{x,y}$, where $x, y \in \mathcal{M}$ and $\theta_{x,y}(z) = x < y, z >$ for all $z \in \mathcal{M}$. In [**MT**] the operators $\theta_{x,y}$ are called elementary operators. The set $\mathcal{K}^*(\mathcal{M})$ is a closed, two sided self-adjoint ideal in the C^* -algebra $B^a(\mathcal{M})$, and satisfies the conditions of the above definition in the case when $\mathcal{M} = H_{\mathcal{A}}$, see [**MT**].

Let \mathcal{A} be a properly infinite von Neumann algebra acting on a Hilbert space H, and let \mathfrak{m} be the norm closure of the set of all $S \in \mathcal{A}$ for which $P_{\overline{ImS}} \in Proj_0(\mathcal{A})$. Then the couple $(\mathcal{A}, \mathfrak{m})$ satisfies the conditions of the above Definition.

Let $a \in \mathcal{A}$. We say that a is an upper semi-Fredholm element with respect to the ideal \mathcal{F} if a is invertible up to pair of projections (p, q)where $p \in \mathcal{F}$. Similarly, we say that a is a lower semi-Fredholm element with respect to the ideal \mathcal{F} , however in this case we assume that $q \in \mathcal{F}$ (and not p). If both p and q belong to \mathcal{F} , we say that a is a Fredholm element with respect to the ideal \mathcal{F} .

It can be proved that such upper semi-Fredholm elements correspond to elements in \mathcal{A} that are left invertible module the ideal \mathcal{F} , such lower semi-Fredholm elements correspond to elements in \mathcal{A} that are right invertible module the ideal \mathcal{F} , whereas such Fredholm elements correspond to elements in \mathcal{A} that are invertible module the ideal \mathcal{F} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

[KL] Semi-A-Fredholm operators on the standard Hilbert module H_A correspond to semi-Fredholm elements in the C^* -algebra $B^a(H_A)$ with respect to the ideal $\mathcal{K}^*(H_A)$. Moreover, if A is a properly infinite von Neumann algebra, then abstract Fredholm elements in A with respect to the ideal \mathfrak{m} are generalized Fredholm operators in the sense of Breuer.

Corollary

Let \mathcal{A} be a properly infinite von Neumann algebra. Then an operator $T \in \mathcal{A}$ is \mathcal{A} -Fredholm in the sense of Breuer if and only if there exist projections $P, Q \in Proj_0(\mathcal{A})$ such that T is invertible up to (P, Q).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let \mathcal{A} be a properly infinite von Neumann algebra and $T \in \mathcal{A}$. We say that T is upper semi- \mathcal{A} -Fredholm if there exist projections P, Q in \mathcal{A} such that T is invertible up to (P, Q) where $P \in Proj_0(\mathcal{A})$. Similarly we say that T is lower semi- \mathcal{A} -Fredholm , however in this case we assume that $Q \in Proj_0(\mathcal{A})$.

Corollary

Let A be a properly infinite von Neumann algebra and $T \in A$. Then T is upper (respectively lower) semi-Fredholm type element in A with respect to \mathfrak{m} if and only if T is upper (respectively lower) semi-A-Fredholm.

Proposition

[KL] Let $a \in A$ be invertible up to (p, q), and also invertible up to (p', q'), where p, q, p', q' are projections in \mathcal{F} . Then in $\mathcal{K}(\mathcal{F})$ we have [p] - [q] = [p'] - [q'].

Definition

[KL] Let \mathcal{F} be the ideal of finite type elements. We say that $a \in \mathcal{A}$ is of Fredholm type (or abstract Fredholm element) if there are projections $p, q \in \mathcal{F}$ such that a is invertible up to (p, q). The index of the element a (or abstract index) is the element of the group $\mathcal{K}(\mathcal{F})$ defined by

$$\operatorname{\mathsf{ind}}(a) = ([p], [q]) \in K(\mathcal{F}),$$

or less formally

$$\operatorname{ind}(a) = [p] - [q].$$

Let $B(\mathcal{A})$ denote the set of all \mathcal{A} - linear bounded adjointable operators on \mathcal{A} when \mathcal{A} is considered as a right Hilbert module over itself. Since \mathcal{A} is self-dual Hilbert module over itself, by [**MT**] all operators that belong to $B(\mathcal{A})$ are adjointable. Moreover, by [**MT**] the set $B(\mathcal{A})$ is a unital C^* -algebra.

Let V be a map from \mathcal{A} into $\mathcal{B}(\mathcal{A})$ given by $V(a) = L_a$ for all $a \in \mathcal{A}$ where L_a is the corresponding left multiplier by a. Then V is an isometric *-homomorphism, and, since \mathcal{A} is unital, it follows that V is in fact an isomorphism. Thus, $\mathcal{B}(\mathcal{A})$ can be identified with \mathcal{A} by considering the left multipliers.

If \mathcal{F} is an ideal of finite type elements in \mathcal{A} , then it is not hard to see that $V(\mathcal{F})$ is an ideal of finite type elements in $B(\mathcal{A})$, so we may identify \mathcal{F} with $V(\mathcal{F})$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $F \in B(\mathcal{A})$. We say that $F \in \mathcal{MK}\Phi(\mathcal{A})$ if there exists a decomposition

$$\mathcal{A} = M_1 \tilde{\oplus} N_1 \stackrel{F}{\longrightarrow} M_2 \tilde{\oplus} N_2 = \mathcal{A}$$

with respect to which F has the matrix $\begin{pmatrix} F_1 & 0 \\ 0 & F_4 \end{pmatrix}$ where F_1 is an isomorphism and $P_{N_1}, P_{N_2} \in \mathcal{F}$. We put then

$$indexF = [P_{N_1}] - [P_{N_2}]$$

in $K(\mathcal{F})$.

Notice that since N_1 and N_2 are closed and complementable, one can show that they are orthogonally complementable, hence P_{N_1} and P_{N_2} are well defined.

Moreover, one can show that this approach is equivalent to the approach introduced above and that $\mathcal{MK}\Phi$ -operators correspond to Fredholm type elements in $\mathcal{A}.$

Proposition

 $[\mathsf{KL}]$ The set of Fredholm type elements is open in $\mathcal A$ and the index is a locally constant function.

Proposition

[KL] a) Let $a \in A$ be of Fredholm type, and let $f \in \mathcal{F}$. Then a + f is also of Fredholm type, and index (a + f) = index a.

b) If $f \in \mathcal{F}$, then 1 + f is of Fredholm type, and index (1 + f) = 0.

Moreover, there is $p \in \mathcal{F}$ such that 1 + f is invertible up to (p, p).

Proposition

[KL] a) If *a* is of Fredholm type, then a is invertible modulo \mathcal{F} ; b) Conversely, if *a* is invertible modulo \mathcal{F} , then a is of Fredholm type.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Theorem

[KL] (index theorem). Let A be a unital C^* -algebra, and let $\mathcal{F} \subseteq A$ be an algebra of finite type elements. If t_1 and t_2 are Fredholm type elements, then t_1t_2 is of Fredholm type as well. Moreover there holds

$$index(t_1t_2) = index t_1 + index t_2.$$

In other words, if we denote the set of all Fredholm type elements by Fred (F), then Fred (F) is a semigroup (with unit) with respect to multiplication, and the mapping index is a homomorphism from (Fred $(F), \cdot$) to (K(F), +).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lemma Let $p \in \mathcal{F}$ be a projection. Then the couple

$$((1-p)\mathcal{A}(1-p),(1-p)\mathcal{F}(1-p))$$

satisfies the conditions of the above Definition.

Corollary

Let $a \in A$ and p be a projection in \mathcal{F} . Then a is a Fredholm type element in A with respect to the ideal \mathcal{F} if and only if (1 - p)a(1 - p) is a Fredholm type element in (1 - p)A(1 - p) with respect to the ideal $(1 - p)\mathcal{F}(1 - p)$ and in this case index a = index (1 - p)a(1 - p).

Lemma

Let $a \in A$. Then a is an upper semi-Fredholm element if and only if a is left invertible up to some projection $p \in \mathcal{F}$. Similarly, a is a lower semi-Fredholm element if and only if a is right invertible up to some projection $q \in \mathcal{F}$.

Corollary

Let \mathcal{A} be a properly infinite von Neumann algebra acting on a Hilbert space H and $T \in \mathcal{A}$. Then T is upper semi- \mathcal{A} -Fredholm if and only if there exists some $P \in \operatorname{Proj}_0(\mathcal{A})$ such that T is bounded below on (I - P)(H). Similarly, T is lower semi- \mathcal{A} -Fredholm if and only if there exists some $Q \in \operatorname{Proj}_0(\mathcal{A})$ such that $(I - Q)(H) \subseteq \operatorname{Im} T$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lemma

[IS5] Let $F \in B^a(M)$ where M is a Hilbert C^* -module and suppose that ImF is closed. Then the following statements hold: a) $F \in \mathcal{M}\Phi_+(M)$, if and only if ker F is finitely generated; b) $F \in \mathcal{M}\Phi_-(M)$, if and only if ImF^{\perp} is finitely generated.

Corollary

Let \mathcal{A} be a von Neumann algebra and $T \in \mathcal{A}$. Then the following statements hold.

1) If T is upper semi-A-Fredhoolm, then $P_{\ker T} \in Proj_0(A)$. In particular, if ImT is closed, then T is upper semi-A-Fredholm if and only if $P_{\ker T} \in Proj_0(A)$. 2) If T is lower semi-A-Fredholm, then $P_{\overline{ImT}^{\perp}} \in Proj_0(A)$. In particular, if ImT is closed, then T is lower semi-A-Fredholm if and only if $P_{ImT^{\perp}} \in Proj_0(A)$.

Lemma

Let $a \in G(\mathcal{A})$ and suppose that $K(\mathcal{F})$ satisfies the cancellation property i.e. for any pair of projections p, q in \mathcal{F} we have that $p \sim q$ whenever [p] = [q]. Then for every $f \in \mathcal{F}$ we have that a + f is left invertible in \mathcal{A} if and only if a + f is right invertible in \mathcal{A} .

For $\alpha \in \mathcal{A}$ we may let αI be the operator on $\mathcal{H}_{\mathcal{A}}$ given by

$$\alpha I(x_1, x_2, \dots) = (\alpha x_1, \alpha x_2, \dots).$$

It is straightforward to check that αI is an \mathcal{A} -linear operator on $\mathcal{H}_{\mathcal{A}}$. Moreover, αI is bounded and $|| \alpha I || = || \alpha ||$. Finally, αI is adjointable and its adjoint is given by $(\alpha I)^* = \alpha^* I$.

We give then the following generalization of the well known Fredholm alternative.

Corollary

Let $K \in \mathcal{K}^*(\mathcal{H}_{\mathcal{A}})$ and $\alpha \in G(\mathcal{A})$. Suppose that $K_0(\mathcal{A})$ satisfies the cancellation property. Then the equation $(K - \alpha I) = y$ has a solution for every $y \in \mathcal{H}_{\mathcal{A}}$ if and only if $K - \alpha I$ is bounded below. In this case the solution of the above equation is unique.

Let p, q be projections in \mathcal{A} . We will denote $p \leq q$ if there exists some projection p' such that $p' \leq q$ and $p \sim p'$.

Definition

Let $a \in \mathcal{A}$. We say that a is an upper semi-Weyl type element with respect to the ideal \mathcal{F} if there exist projections p, q in \mathcal{A} such that $p \in \mathcal{F}, p \leq q$ and a is invertible up to pair (p, q). Similarly we say that a is a lower semi-Weyl type element with respect to the ideal \mathcal{F} , only in this case we assume that $q \in \mathcal{F}$ and $q \leq p$. Finally, we say that a is a Weyl type element with respect to the ideal \mathcal{F} if a is invertible up to pair (p, q) where p, q are projections in \mathcal{F} and $p \sim q$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Set $\mathcal{K}\Phi_+(\mathcal{A}) = \{a \in \mathcal{A} \mid a \text{ is upper semi-Fredholm type element }\},\$ $\mathcal{K}\Phi_-(\mathcal{A}) = \{a \in \mathcal{A} \mid a \text{ is lower semi-Fredholm type element }\},\$ $\mathcal{K}\Phi(\mathcal{A}) = \{a \in \mathcal{A} \mid a \text{ is Fredholm type element }\},\$ $\mathcal{K}\Phi_-^+(\mathcal{A}) = \{a \in \mathcal{A} \mid a \text{ is upper semi-Weyl type element }\},\$ $\mathcal{K}\Phi_-^+(\mathcal{A}) = \{a \in \mathcal{A} \mid a \text{ is lower semi-Weyl type element }\},\$ $\mathcal{K}\Phi_0(\mathcal{A}) = \{a \in \mathcal{A} \mid a \text{ is Weyl type element }\}.$ Proposition

The sets $\mathcal{K}\Phi_+(\mathcal{A})$, $\mathcal{K}\Phi_-(\mathcal{A})$, $\mathcal{K}\Phi_+^-(\mathcal{A})$, $\mathcal{K}\Phi_-^+(\mathcal{A})$, $\mathcal{K}\Phi_0(\mathcal{A})$, $\mathcal{K}\Phi_+(\mathcal{A}) \setminus \mathcal{K}\Phi_+^-(\mathcal{A})$, $\mathcal{K}\Phi_-(\mathcal{A}) \setminus \mathcal{K}\Phi_-^+(\mathcal{A})$ and $\mathcal{K}\Phi(\mathcal{A}) \setminus \mathcal{K}\Phi_0(\mathcal{A})$ are open in the norm topology of \mathcal{A} .

Corollary

Let $f: [0,1] \to \mathcal{A}$ be a continuous map such that $f([0,1]) \subset \mathcal{K}\Phi_+(\mathcal{A}) \cup \mathcal{K}\Phi_-(\mathcal{A}).$ Then the following statements hold. 1) If $f(0) \in \mathcal{K}\Phi_{+}(\mathcal{A}) \setminus \mathcal{K}\Phi(\mathcal{A})$, then $f(1) \in \mathcal{K}\Phi_{+}(\mathcal{A}) \setminus \mathcal{K}\Phi(\mathcal{A})$. 2) If $f(0) \in \mathcal{K}\Phi_{-}(\mathcal{A}) \setminus \mathcal{K}\Phi(\mathcal{A})$, then $f(1) \in \mathcal{K}\Phi_{-}(\mathcal{A}) \setminus \mathcal{K}\Phi(\mathcal{A})$. 3) If $f(0) \in \mathcal{K}\Phi^-(\mathcal{A})$, then $f(1) \in \mathcal{K}\Phi^-(\mathcal{A})$. 4) If $f(0) \in \mathcal{K}\Phi^+(\mathcal{A})$, then $f(1) \in \mathcal{K}\Phi^+(\mathcal{A})$. 5) If $f(0) \in \mathcal{K}\Phi_0(\mathcal{A})$, then $f(1) \in \mathcal{K}\Phi_0(\mathcal{A})$. 6) If $f(0) \in \mathcal{K}\Phi_+(\mathcal{A}) \setminus \mathcal{K}\Phi_+^-(\mathcal{A})$, then $f(1) \in \mathcal{K}\Phi_+(\mathcal{A}) \setminus \mathcal{K}\Phi_+^-(\mathcal{A})$. 7) If $f(0) \in \mathcal{K}\Phi_{-}(\mathcal{A}) \setminus \mathcal{K}\Phi_{-}^{+}(\mathcal{A})$, then $f(1) \in \mathcal{K}\Phi_{-}(\mathcal{A}) \setminus \mathcal{K}\Phi_{-}^{+}(\mathcal{A})$. 8) If $f(0) \in \mathcal{K}\Phi(\mathcal{A}) \setminus \mathcal{K}\Phi_0(\mathcal{A})$, then $f(1) \in \mathcal{K}\Phi(\mathcal{A}) \setminus \mathcal{K}\Phi_0(\mathcal{A})$. 9) If $f(0) \in \mathcal{K}\Phi_+(\mathcal{A})$, then $f(1) \in \mathcal{K}\Phi_+(\mathcal{A})$. 10) If $f(0) \in \mathcal{K}\Phi_{-}(\mathcal{A})$, then $f(1) \in \mathcal{K}\Phi_{-}(\mathcal{A})$. 11) If $f(0) \in \mathcal{K}\Phi(\mathcal{A})$, then $f(1) \in \mathcal{K}\Phi(\mathcal{A})$ and index f(0) = index f(1).

Corollary

Let $a \in A$. Then the following statements hold. 1) If a belongs to the boundary of $\mathcal{K}\Phi(A)$ in A, then $a \in A \setminus \mathcal{K}\Phi_+(A) \cup \mathcal{K}\Phi_-(A)$. 2) If a belongs to the boundary of $\mathcal{K}\Phi_+^-(A)$ in A, then $a \in A \setminus \mathcal{K}\Phi_+(A)$. 3) If a belongs to the boundary of $\mathcal{K}\Phi_-^+(A)$ in A, then $a \in A \setminus \mathcal{K}\Phi_-(A)$. 4) If a belongs to the boundary of $\mathcal{K}\Phi_0(A)$ in A, then $a \in A \setminus \mathcal{K}\Phi(A)$.

Proposition

Let $a \in \mathcal{A}$. Then the following holds. 1) If $a \in \mathcal{K}\Phi^-_+(\mathcal{A})$ and $f \in \mathcal{F}$, then $a + f \in \mathcal{K}\Phi^+_+(\mathcal{A})$. 2) If $a \in \mathcal{K}\Phi^+_-(\mathcal{A})$ and $f \in \mathcal{F}$, then $a + f \in \mathcal{K}\Phi^+_-(\mathcal{A})$. 3) If $a \in \mathcal{K}\Phi_0(\mathcal{A})$ and $f \in \mathcal{F}$, then $a + f \in \mathcal{K}\Phi_0(\mathcal{A})$.

Lemma

Let $a \in \mathcal{K}\Phi^-_+(\mathcal{A}) \cap \mathcal{K}\Phi^+_-(\mathcal{A}) \cap \mathcal{K}\Phi(\mathcal{A})$. Then there exist projections p, qin \mathcal{F} such that a is invertible up to $(p, q), qa(1 - p) = 0, p \leq q$ and $q \leq p$.

Proposition

Let $a \in \mathcal{A}$. Then the following statements hold. 1) $a \in \mathcal{K}\Phi^-_+(\mathcal{A})$ if and only if there exist a left invertible element $b \in \mathcal{A}$ and some $f \in \mathcal{F}$ such that a = b + f, 2) $a \in \mathcal{K}\Phi^+_-(\mathcal{A})$ if and only if there exist a right invertible element $b \in \mathcal{A}$ and some $f \in \mathcal{F}$ such that a = b + f,

3) $a \in \mathcal{K}\Phi_0(\mathcal{A})$ if and only if there exist an invertible element $b \in \mathcal{A}$ and some $f \in \mathcal{F}$ such that a = b + f.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Corollary

The sets $\mathcal{K}\Phi^-_+(\mathcal{A}), \mathcal{K}\Phi^+_-(\mathcal{A})$ and $\mathcal{K}\Phi_0(\mathcal{A})$ are semigroups under the multiplication.

Let \mathcal{A} be a properly infinite von Neumann algebra and $T \in \mathcal{A}$. We say that T is upper semi- \mathcal{A} -Weyl if there exist projections P, Q in \mathcal{A} such that T is invertible up to (P, Q) where $P \in Proj_0(\mathcal{A})$ and $P \preceq Q$. Similarly we say that T lower semi- \mathcal{A} -Weyl, however in this case we assume that $Q \in Proj_0(\mathcal{A})$ and $Q \preceq P$. Finally, if $P \sim Q$, we say that T is \mathcal{A} -Weyl.

Corollary

Let A be a properly infinite von Neumann algebra and $T \in A$. Then T is upper (respectively lower) semi-Weyl type element in A with respect to m if and only if T is upper (respectively lower) semi-A-Weyl. Finally, Tis Weyl type element in A with respect to m if and only if T is A-Weyl.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Corollary

Let A be a properly infinite von Neumann algebra acting on a Hilbert space H and $T \in A$. Then the following statements hold. 1) T is upper semi-A- Weyl if and only if there exist some $S \in A$ and $F \in \mathfrak{m}$ such that S is bounded below and T = S + F. 2) T is lower semi-A- Weyl if and only if there exist some $S \in A$ and $F \in \mathfrak{m}$ such that S is surjective and T = S + F. 3) T is A-Weyl if and only if there exist some $S \in A$ and $F \in \mathfrak{m}$ such that S is invertible and T = S + F.

Corollary

Let \mathcal{A} be a properly infinite von Neumann algebra. Then we have that $\mathcal{K}\Phi^-_+(\mathcal{A}) \cap \mathcal{K}\Phi^+_-(\mathcal{A}) \cap \mathcal{K}\Phi(\mathcal{A}) = \mathcal{K}\Phi_0(\mathcal{A}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition [IS1] Let $F \in \mathcal{M}\Phi_+(\mathcal{H}_A)$. We say that $F \in \mathcal{M}\Phi_+^{-'}(\mathcal{H}_A)$ if there exists a decomposition

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \stackrel{F}{\longrightarrow} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}}$$

with respect to which

$$\mathsf{F} = \left[egin{array}{cc} F_1 & 0 \\ 0 & F_4 \end{array}
ight],$$

where F_1 is an isomorphism, N_1 is closed, finitely generated and $N_1 \leq N_2$. Similarly, we define the class $\mathcal{M}\Phi_-^{+'}(\mathcal{H}_A)$, only in this case $F \in \mathcal{M}\Phi_-(\mathcal{H}_A)$, N_2 is finitely generated and $N_2 \leq N_1$. Such operators we will call semi- \mathcal{A} -Weyl operators. Further, we define $\mathcal{M}\Phi_0(\mathcal{H}_A)$ to be the set of all $F \in \mathcal{M}\Phi(\mathcal{H}_A)$ for which there exists an $\mathcal{M}\Phi$ -decomposition

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \xrightarrow{F} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}},$$

where $N_1 \cong N_2$. Such operators we will call A-Weyl operators.

Theorem [**IS1**] Let $F \in B^{a}(H_{A})$. The following statements are equivalent: 1) $F \in \mathcal{M}\Phi_{+}^{-'}(H_{A})$, 2) There exist $D \in B^{a}(H_{A})$, $K \in \mathcal{K}^{*}(H_{A})$ such that D is bounded below and F = D + K.

Corollary

[IS1] Let $D \in B^{a}(H_{A})$. The following statements are equivalent: 1) $D \in \mathcal{M}\Phi_{-}^{+'}(H_{A})$, 2) There exist a surjective operator $Q \in B^{a}(H_{A})$ and $K \in \mathcal{K}^{*}(H_{A})$ such that D = Q + K.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Theorem Let $B^{a}(H_{\mathcal{A}})$. Then the following statements are equivalent: 1) $F \in \mathcal{M}\Phi_{0}(H_{\mathcal{A}})$, 2) There exist an invertible $D \in B^{a}(H_{\mathcal{A}})$ and $K \in \mathcal{K}^{*}(H_{\mathcal{A}})$ such that F = D + K.

Lemma

Let $F \in \mathcal{M}\Phi_+^{-'}(H_A) \cap \mathcal{M}\Phi_-^{+'}(H_A)$. Then there exists an $\mathcal{M}\Phi$ -decomposition

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \stackrel{F}{\longrightarrow} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}}$$

for F with the property that $N_1 \leq N_2$ and $N_2 \leq N_1$.

Thank you for attention ! stefan.iv10@outlook.com

- [1] [IS6] S. Ivković, Semi-Fredholm theory in C*-algebras, Banach Journal of Mathematical Analysis, Vol. 17 51 (2023), https://doi.org/10.1007/s43037-023-00277-y
- [2] [KL] D.J. Kečkić, Z. Lazović, Fredholm operators on C*-algebras. ActaSci.Math. 83, 62655 (2017). https://doi.org/10.14232/actasm-015-526-5
- [3] [BR] M. Breuer, Fredholm theories in von Neumann algebras. I. Math. Ann. 178, 243–254 (1968). https://doi.org/10.1007/BF01350663
- [4] [BR2] M. Breuer, Fredholm theories in von Neumann algebras. II, Math. Ann. 180, 313–325 (1969). https://doi.org/10.1007/BF01351884
- [5] [MT] V. M. Manuilov, E. V. Troitsky, *Hilbert C*-modules*, In: Translations of Mathematical Monographs. 226, Journal of the American Mathematical Society. Amer. Math. Soc., Providence, RI. ISSN 0894-0347, Providence, RI, 2005.
- [6] [MF] A. S. Mishchenko, A.T. Fomenko, *The index of eliptic operators over C*-algebras*, Izv. Akad. Nauk SSSR Ser. Mat. **43** (1979), 831–859; English transl., Math. USSR-Izv.**15** (1980) 87–112.

- [7] [IS1] S. Ivković, Semi-Fredholm theory on Hilbert C*-modules, Banach Journal of Mathematical Analysis, Vol. 13 (2019) no. 4 2019, 989-1016 doi:10.1215/17358787-2019-0022. https://projecteuclid.org/euclid.bjma/1570608171
- [8] [IS2] S. Ivković, On operators with closed range and semi-Fredholm operators over W*-algebras, Russ. J. Math. Phys. 27, 48-60 (2020) http://link.springer.com/article/10.1134/S1061920820010057
- [9] [IS3] S. Ivković, On Upper Triangular Operator 2 × 2 Matrices Over C*-Algebras, FILOMAT, (2020), vol. 34 no. 3, 691-706 https://doi.org/10.2298/FIL20036911
- [10] [IS4] S. Ivković, On compressions and generalized spectra of operators over C*-algebras, Ann. Funct. Anal. 11, 505522 (2020). https://doi.org/10.1007/s43034-019-00034-z
- [11] [IS5] S. lvković, On Drazin invertible C*-operators and generalized C*-Weyl operators, Ann. Funct. Anal. 11, 14 36 (2023) https://doi.org/10.1007/s43034-023-00258-0

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・