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Umbral Calculus
Umbral calculus is essentially the theory dealing with Sheffer polynomial
sequences, which are characterised by the exponential form of their
generating function.

The class of Sheffer sequences includes the polynomial sequences of
binomial type and Appell sequences.

A central object of studies of umbral calculus is the umbral composition,
which equips the set of all Sheffer sequences with a group structure. This
group is isomorphic to the Riordan group of infinite lower triangular
matrices.

The paper

Cheon, G.-S., Luzón, A., Morón, M.A. Prieto-Martinez, L.F., Song, M.: Finite and infinite

dimensional Lie group structures on Riordan groups. Adv. Math. 319 (2017), 522–566

introduced a Lie group structure on the Riordan group and discussed the
corresponding Lie algebra.

See also
Babenko, I.K.: Algebra, geometry and topology of the substitution group of formal power series.
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Multivariate and infinite-dimensional umbral calculus

A lot of research has been done to extend the classical umbral calculus to
the multivariate case. However, that research had a significant drawback
of being basis-dependent.

The paper
Finkelshtein, D., Kondratiev, Y., Lytvynov, E., Oliveira, M.J.: An infinite dimensional umbral

calculus. J. Funct. Anal. 276 (2019), 3714–3766

developed foundations of infinite-dimensional, basis-independent umbral
calculus.



Sheffer polynomials over a Hilbert space

Let
H+ ⊂ H0 ⊂ H−

be a standard triple of real separable Hilbert spaces, i.e., the Hilbert
space H+ is densely and continuously embedded into H0 and H− is the
dual of H+, while the dual paring between elements of H− and H+ is
determined by the inner product in H0.

Then, for each n, we also get a standard triple

H⊙n
+ ⊂ H⊙n

0 ⊂ H⊙n
0 .

Here ⊙ denotes the symmetric tensor product. (For a real Hilbert space
H, we define H⊙0 := R.)

For Fn ∈ H⊙n
− and fn ∈ H⊙n

+ , we denote by ⟨Fn, fn⟩ the dual pairing
between Fn and fn.



A polynomial on H− is a function p : H− → R of the form

p(ω) =

n∑
k=0

⟨ω⊙k, fk⟩, ω ∈ H−, fk ∈ H⊙i
+ .

We denote by P(H−) the vector space of all polynomials on H−.

By identifying the polynomial p(ω) with the sequence (fk), we endow
P(H−) with the topology of the topological direct sum of the Hilbert
spaces H⊙k

+ , k ∈ N0.



A monic polynomial sequence on H− is a continuous linear map
P ∈ L(P(H−)) that satisfies

P ⟨ω⊙n, fn⟩ =
n∑

k=0

⟨ω⊙k, pknfn⟩, (1)

where pkn ∈ L(H⊙n
+ ,H⊙k

+ ) and pnn = 1.

We identify P with the infinite matrix

P =
[
pkn

]
k,n∈N0

,

where pkn = 0 for k > n. Thus, the matrix P is upper-triangular with
the identity operators pnn = 1 on the diagonal.

Let p∗kn ∈ L(H⊙k
− ,H⊙n

− ). Then

P ⟨ω⊙n, fn⟩ = ⟨pn(ω), fn⟩,

where pn(ω) ∈ H⊙n
− is given by

pn(ω) :=

n∑
k=0

p∗knω
⊙k with p∗nn = 1.

Thus, (pn(ω))
∞
n=0 is another form of representation of P .



A monic polynomial sequence (sn)
∞
n=0 is called a Sheffer sequence if it

has the exponential generating function of the form

∞∑
n=0

1

n!
⟨sn(ω), ξ⊙n⟩ = exp

[
⟨ω,B(ξ)⟩

]
A(ξ), ω ∈ H−, ξ ∈ H+, (2)

where

B(ξ) =

∞∑
k=1

bkξ
⊙k

with bk ∈ L(H⊙k
+ ,H+) and b1 = 1, and

A(ξ) =

∞∑
k=0

akξ
⊙k

with ak ∈ L(H⊙k
+ ,R), a0 = 1.

The equality (2) is understood as the equality of formal tensor power
series in ξ: replace ξ with tξ, where t ∈ R, and equate the coefficients by
each tk.



We denote by S the set of all Sheffer sequences.

We denote by A the set of all Appell sequences, i.e., the Sheffer
sequences for which B(ξ) = ξ:

∞∑
n=0

1

n!
⟨sn(ω), ξ⊙n⟩ = exp

[
⟨ω, ξ⟩

]
A(ξ).

We denote by B the set of all binomial sequences, i.e., the Sheffer
sequences for which A(ξ) = 1:

∞∑
n=0

1

n!
⟨sn(ω), ξ⊙n⟩ = exp

[
⟨ω,B(ξ)⟩

]
.

Such a sequence satisfies, for all ω, ζ ∈ H−,

sn(ω + ζ) =

n∑
k=0

(
n

k

)
sk(ω)⊙ sn−k(ζ).



Since each monic polynomial sequence (pn)
∞
n=0 is identified with an

operator P ∈ L(P(H−)), one can take a product of two such operators
and construct a new monic polynomial sequence. Such a product is
called an umbral composition of monic polynoial sequences.

Explicitly, if

P (1) =
[
p
(1)
kn

]
k,n∈N0

, P (2) =
[
p
(12
kn

]
k,n∈N0

,

then the umbral product is just the product of the matrices:

P = P (1)P (2),

i.e.,

pkn =

n∑
i=k

p
(1)
ki p

(2)
in .

Equipped with the umbral composition, the set of all monic polynomial
sequences, M, is a group.



Theorem

(i) S is a group under the umbral composition of monic polynomial
sequences. Both A and B are subgroups of S. Furthermore, A is a
commutative, normal subgroup of S, and

S = A⋊ B,

i.e., the Sheffer group S is the semidirect product of the Appell group A
and the binomial group B.



Theorem (continuation)

(ii) Let S(1) and S(2) be two Sheffer sequences with the generating
functions

∞∑
n=0

1

n!
⟨s(i)n (ω), ξ⊙n⟩ = exp

[
⟨ω,B(i)(ξ)⟩

]
A(i)(ξ).

Let S = S(1)S(2). Then the generating function of the Sheffer sequence
S is of the form

∞∑
n=0

1

n!
⟨sn(ω), ξ⊙n⟩ = exp

[
⟨ω,B(ξ)⟩

]
A(ξ),

where
B(ξ) = B(1)(B(2)(ξ))

and
A(ξ) = A(1)(B(2)(ξ)) ·A(2)(ξ).

Our aim is to understand S, A and B as infinite-dimensional Lie groups,
in the sense of Milnor, their respective Lie algebras and the Lie brackets
on them.



Lie group of all monic polynomial sequences

Let V be the vector space of all continuous linear operators
V ∈ L(P(H−)),

V =
[
Vkn

]
k,n∈N0

, Vkn ∈ L(H⊙n
+ ,H⊙k

+ ), Vkn = 0 if k ≥ n.

We endow V with the product topology of∏
0≤k<n<∞

L(H⊙n
+ ,H⊙k

+ ).

Then V becomes a complete, locally convex topological vector space.

We have a bijective map

M ∋ P 7→ P − 1 ∈ V.

This map endows M with a topology and makes M an infinite
dimensional manifold with a global parametrisation.



Proposition

M is an infinite-dimensional Lie group, V is its Lie algebra and the Lie
bracket on V is given by

[V1, V2] = V1V2 − V2V1.

For each, V ∈ V, we have

exp[V ] =

∞∑
n=0

1

n!
V n ∈ M,

and for each P ∈ M,

V = log(P ) =

∞∑
n=1

(−1)n+1

n
(P − 1)n ∈ V.

The map
M ∋ P 7→ log(P ) ∈ V

gives an equivalent coordinate system on M.



Differentiation of polynomial on H−
For a function f : H− → R and ζ ∈ H−, we denote by Dζf the Gateaux
derivative of f in direction ζ:

Dζf(ω) =
d

dt

∣∣∣
t=0

f(ω + tζ).

Then, for ξ ∈ H+,

Dk
ζ ⟨ω⊙n, ξ⊙n⟩ = (n)k⟨ζ⊙k, ξ⊙k⟩⟨ω⊙(n−k), ξ⊙(n−k)⟩,

where
(n)k = n(n− 1) · · · (n− k + 1).

We define a continuous linear operator

∇k : P(H−) → H⊙k
+ ⊗ P(H−)

satisfying
Dk

ζ p(ω) = ⟨ζ⊙k,∇kp(ω)⟩.
Then

∇k⟨ω⊙n, ξ⊙n⟩ = (n)k ξ
⊙k⟨ω⊙(n−k), ξ⊙(n−k)⟩,



Assume ak ∈ L(H⊙k
+ ,R). Then,

ak∇k ∈ L(P(H−)).

For example,

ak∇k⟨ω⊙n, ξ⊙n⟩ = (n)k(akξ
⊙k)⟨ω⊙(n−k), ξ⊙(n−k)⟩.

Similarly, if bk ∈ L(H⊙k
+ ,H+),

⟨ω, bk∇k⟩ ∈ L(P(H−)).

For example,

⟨ω, bk∇k⟩⟨ω⊙n, ξ⊙n⟩ = (n)k⟨ω⊙(n−k+1), (bkξ
⊙k)⊙ ξ⊙(n−k)⟩.



Theorem

(i) S, A, B are Lie subgroup of M.
(ii) Denote

s = {V ∈ V | exp(V ) ∈ S},
a = {V ∈ V | exp(V ) ∈ A},
b = {V ∈ V | exp(V ) ∈ B}.

Then s, a, b are the Lie algebras of S, A, and B, respectively. The s, a, b
are closed subspaces of V and

a =

{ ∞∑
k=1

ak∇k | ak ∈ L(H⊙k
+ ,R)

}
,

b =

{ ∞∑
k=2

⟨ω, bk∇k⟩ | bk ∈ L(H⊙k
+ ,H+)

}
,

s = l. s.(a ∪ b).



For the operators ak ∈ L(H⊙k
+ ,R) (k ≥ 1) and bk ∈ L(H⊙k

+ ,H+)
(k ≥ 2), we denote the formal tensor power series

a(ξ) =

∞∑
k=1

akξ
⊙k, b(ξ) =

∞∑
k=2

bkξ
⊙k.

Then we will write elements of the Lie algebra a as a(∇), and elements
of the Lie algebra b as ⟨ω, b(∇)⟩.

Note that, for φ ∈ H+, the

Dφa(ξ) =

∞∑
k=1

k ak
(
ξ⊙(k−1) ⊙ φ

)
,

Dφb(ξ) =

∞∑
k=2

k bk
(
ξ⊙(k−1) ⊙ φ

)
.



Theorem

(i) For any a(1)(∇), a(2)(∇) ∈ a,

[a(1)(∇), a(2)(∇)] = 0.

(ii) For any ⟨ω, b(1)(∇)⟩, ⟨ω, b(2)(∇)⟩ ∈ b, we have[
⟨ω, b(1)(∇)⟩, ⟨ω, b(2)(∇)⟩

]
=

〈
ω,

(
Db(2)b

(1)
)
(∇)−

(
Db(1)b

(2)
)
(∇)

〉
.

(iii) For any a(∇) ∈ a and ⟨ω, b(∇)⟩ ∈ b,[
a(∇), ⟨ω, b(∇)⟩

]
=

(
Dba

)
(∇).


