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Borsuk’s number

Borsuk’s number f (n) is the smallest integer such that any set of diameter 1
in En can be covered by f (n) sets of smaller diameter.

f (n) ≥ n + 1 by considering regular simplex in En.

Borsuk (1933) asked if f (n) = n + 1 for all n?
Borsuk (1933): f (1) = 2 and f (2) = 3,
Perkal (1947): f (3) = 4.

Asymptotic lower bound: f (n) ≥ c
√

n for large n established by
Kahn and Kalai (1993): c ≈ 1.203,
Raigorodskii (1999): c ≈ 1.2255.

Smallest known n with f (n) > n + 1 is n = 64.
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Asymptotic upper bound on f (n)

Schramm (1988), Bourgain and Lindenstrauss (1989):

f (n) ≤
(√

3
2 + o(1)

)n
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Bourgain and Lindenstrauss’s results

Let g(n) be the smallest number of balls of diameter < 1 needed to cover
an arbitrary set of diameter 1 in En. Clearly, f (n) ≤ g(n).

Rogers (1965): g(n) ≤ (
√

2 + o(1))n

Danzer (1965): g(n) ≥ 1.003n

Bourgain and Lindenstrauss (1989): 1.0645n ≤ g(n) ≤
(√

3
2 + o(1)

)n

.
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Illumination and covering

Let K be a convex body in En. A point x ∈ ∂K is illuminated by a direction
ξ ∈ Sn−1 if the ray {x + ξt : t ≥ 0} intersects int(K ).
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ξ ∈ Sn−1 if the ray {x + ξt : t ≥ 0} intersects int(K ).

The illumination number I(K ) is the minimal number of directions such that
every x ∈ ∂K is illuminated by one of these directions.

Denote h(K ) to be the smallest number N such that K can be covered by
N smaller homothetic copies of K .
Boltyanski (1960): I(K ) = h(K ) for any convex body K .
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Convex bodies of constant width
A convex body in En has constant width, if its projection onto any line has
the same length.

It is well-known that any set of diameter 1 is contained in
a convex body of constant width 1.
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Schramm’s upper bound on Borsuk’s number

Define

h(n) := sup{h(K )= I(K ) : K is a convex body of constant width in En}.

We have f (n) ≤ h(n).

Schramm (1988): h(n) ≤
(√

3
2 + o(1)

)n

The only known lower bound on h(n) was the same as for f (n):
h(n) ≥ f (n) ≥ 1.2255

√
n for large n.

Kalai (2015) asked: does there exist C > 1 with h(n) ≥ Cn for large n?
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Main result

We answer the question of Kalai in the affirmative.

Theorem

h(n) ≥ (cos(π/14) + o(1))−n.
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Main geometric ingredient

For fixed x ∈ Sn−1 and 0 < α ≤ π/6 define
Q(x , α) := {x} ∪ {y ∈ Sn−1 : ‖x − y‖ = 2 cosα}.

11



Main geometric ingredient

For fixed x ∈ Sn−1 and 0 < α ≤ π/6 define
Q(x , α) := {x} ∪ {y ∈ Sn−1 : ‖x − y‖ = 2 cosα}.

For non-zero x , y ∈ En, let
θ(x , y) := arccos( x ·y

‖x‖‖y‖).
For x ∈ Sn−1 and 0 < α < π, set

C(x , α) := {y ∈ Sn−1 : θ(x , y) ≤ α}.

Lemma

Suppose 0 < α ≤ π/6, K is a convex body in En s.t. diam K = 2 cosα
and for some x ∈ Sn−1 we have Q(x , α) ⊂ K. Then x ∈ ∂K and any
direction ξ ∈ Sd−1 illuminating x satisfies ξ ∈ C(−x , π2 − α).
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Separation required to control the diameter

For a finite X ⊂ Sn−1, let W(X ) :=
⋃

x∈X Q(x , α).

Lemma

Suppose 0 < α ≤ π/6 and X ⊂ Sn−1.
(i) If θ(x , y) ≤ π − 2α for all x , y ∈ X, then diam X ≤ 2 cosα.
(ii) If 4α ≤ θ(x , y) ≤ π − 6α for all distinct x , y ∈ X,

then diamW(X ) ≤ 2 cosα.

14



Separation required to control the diameter

For a finite X ⊂ Sn−1, let W(X ) :=
⋃

x∈X Q(x , α).

Lemma

Suppose 0 < α ≤ π/6 and X ⊂ Sn−1.
(i) If θ(x , y) ≤ π − 2α for all x , y ∈ X, then diam X ≤ 2 cosα.
(ii) If 4α ≤ θ(x , y) ≤ π − 6α for all distinct x , y ∈ X,

then diamW(X ) ≤ 2 cosα.

14



Main probabilistic lemma

Lemma

Suppose 0 < ψ < ϕ < π
2 are fixed. Then for every positive integer n there

exists a collection X = {x1, . . . , xN} ⊂ Sn−1 with N =
(

1+o(1)
sinϕ

)n
such

that
(a) ψ ≤ θ(xi , xj) ≤ π − ψ for all 1 ≤ i < j ≤ N.
(b) every point of Sn−1 is contained in at most O(n log n) spherical caps

C(xi , ϕ), 1 ≤ i ≤ N.

Proof: with appropriately selected N ′ ≈ N, sample N ′ uniformly i.i.d. points
from Sn−1. By Böröczky and Wintsche (2003), which is the adaptation of
the ideas of Erdős and Rogers (1961/62) to Sn−1, the resulting set satisfies
(b) with high probability.
The expected number of pairs (i , j) not satisfying (a) can be shown to be
at most N ′/4, thus a point from each such pair can be removed to obtain
the desired X .
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Proof of the main result

Theorem

h(n) ≥ (cos(π/14) + o(1))−n.

Proof: use the probabilistic lemma with ϕ = 6π
14 + ε, ψ = 6π

14 , where ε > 0.

Construct W(X ) =
⋃

x∈X Q(x , α) with α = π
14 .

By the separation lemma (ii), diam (W(X )) = 2 cosα.
So there exists a body K ⊃ W(X ) of constant width 2 cosα.
Since ϕ > π

2 − α, (b) of the probabilistic lemma for −X in combination
with the main geometric lemma imply I(K ) ≥

(
1+o(1)
sinϕ

)n
.

Glazyrin (≥2023) noted that our bound h(n) ≥ 1.026n can be improved to
h(n) ≥ 1.047n by a slight modification of the construction: choosing the
bases of the cones from a concentric sphere of smaller radius.
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New lower bound on g(n)

Recall that g(n) is the smallest number of balls of diameter < 1 needed to
cover an arbitrary set of diameter 1 in En.

Bourgain and Lindenstrauss (1989): g(n) ≥ 1.0645n

Theorem

g(n) ≥ (
√

3/2 + o(1))−n (note that 2/
√

3 ≈ 1.1547)

Proof: use the probabilistic lemma with ϕ = π
3 + ε, ψ = π

3 , where ε > 0.
By the separation lemma (i) with α = π

6 , diam X ≤ 2 cos π
6 =

√
3.

Any ball of diameter
√

3 intersects Sn−1 by a cap of radius < ϕ, so by (b) of
the probabilistic lemma we need at least

(
1+o(1)
sinϕ

)n
such caps to cover X .
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Concluding remarks

Conjecture
f (n) ≤ (2/

√
3 + o(1))n

Question
Do we have h(n) ≤ (2/

√
3 + o(1))n? (illumination/smaller homothetic

copies)

Question
Do we have g(n) ≤ (2/

√
3 + o(1))n? (balls)

Thank you!
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