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Borsuk’s number f(n) is the smallest integer such that any set of diameter 1
in E" can be covered by f(n) sets of smaller diameter.

f(n) > n+ 1 by considering regular simplex in E".

Borsuk (1933) asked if f(n) = n+ 1 for all n?
Borsuk (1933): f(1) =2 and f(2) = 3,
Perkal (1947): f(3) = 4.

Asymptotic lower bound: f(n) > cV™ for large n established by
Kahn and Kalai (1993): ¢ ~ 1.203,
Raigorodskii (1999): c ~ 1.2255.

Smallest known n with f(n) > n+1is n = 64.
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Bourgain and Lindenstrauss (1989): 1.0645" < g(n) < (\/;+ o(l)) :
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Convex bodies of constant width

A convex body in E” has constant width, if its projection onto any line has

the same length. It is well-known that any set of diameter 1 is contained in
a convex body of constant width 1.

Therefore, it suffices to consider bodies of constant width to compute the
Borsuk's number f(n).
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Schramm'’s upper bound on Borsuk's number

Define
h(n) :=sup{h(K)=I(K) : K is a convex body of constant width in E"}.

We have f(n) < h(n).

Schramm (1988): h(n) < (\/§+ 0(1))

The only known lower bound on h(n) was the same as for f(n):
h(n) > f(n) > 1.2255V7 for large n.

Kalai (2015) asked: does there exist C > 1 with h(n) > C" for large n?



Main result

We answer the question of Kalai in the affirmative.

h(n) > (cos(m/14) + o(1))~".
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Main geometric ingredient
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Q(x,a) == {x}U{y eS"!:|x —y| =2cosa}.
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Separation required to control the diameter

For a finite X C S"7 1, let W(X) := U,ex Q(x, @).
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Separation required to control the diameter

For a finite X C S"7 1, let W(X) := U,ex Q(x, @).

Suppose 0 < o < /6 and X C S"L.
(i) IfO(x,y) < m—2a forall x,y € X, then diam X < 2cosa.

(ii) If4a < 6(x,y) <7 —6a for all distinct x,y € X,
then diam W(X) < 2 cos a.
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Main probabilistic lemma

Suppose 0 < 9 < ¢ < 5 are fixed. Then for every positive integer n there

exists a collection X = {x,...,xy} C S""1 with N = (%@)n such
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(b) every point of S"~1 is contained in at most O(nlog n) spherical caps
C(xi,p), 1<i<N.
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Main probabilistic lemma

Suppose 0 < 9 < ¢ < 5 are fixed. Then for every positive integer n there

exists a collection X = {x,...,xy} C S""1 with N = (%@)n such

that

(@) ¥ <O(xi,xj)) <m—1 forall1 <i<j<N.

(b) every point of S"~1 is contained in at most O(nlog n) spherical caps
C(xi,p), 1<i<N.

Proof: with appropriately selected N ~ N, sample N’ uniformly i.i.d. points
from S™1. By Bordczky and Wintsche (2003), which is the adaptation of
the ideas of Erdés and Rogers (1961/62) to S"~1, the resulting set satisfies
(b) with high probability.

The expected number of pairs (i, /) not satisfying (a) can be shown to be
at most N'/4, thus a point from each such pair can be removed to obtain
the desired X.



Proof of the main result

h(n) > (cos(m/14) + o(1))~".
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Proof of the main result

h(n) > (cos(m/14) + o(1))~".

Proof: use the probabilistic lemma with ¢ = %f +€ Y= %{, where € > 0.

Construct W(X) = U,ex Q(x, ) with a = ;.

By the separation lemma (ii), diam (W(X)) = 2 cosa.

So there exists a body K D W(X) of constant width 2 cos a.

Since ¢ > 5 — a, (b) of the probabilistic lemma for —X in combination
. . . , 140(1)\"

with the main geometric lemma imply /(K) > (%ED)) :

Glazyrin (>2023) noted that our bound h(n) > 1.026" can be improved to

h(n) > 1.047" by a slight modification of the construction: choosing the

bases of the cones from a concentric sphere of smaller radius.
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New lower bound on g(n)
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New lower bound on g(n)

Recall that g(n) is the smallest number of balls of diameter < 1 needed to
cover an arbitrary set of diameter 1 in E”.

Bourgain and Lindenstrauss (1989): g(n) > 1.0645"

g(n) > (vV/3/2+0(1))™" (note that 2/+/3 ~ 1.1547)

Proof: use the probabilistic lemma with o = Z +¢, ¢ = 3, where ¢ > 0.
By the separation lemma (i) with o = %, diam X < 2cos% = /3.
Any ball of diameter /3 intersects S"~! by a cap of radius < ¢, so by (b) of

n
the probabilistic lemma we need at least <1;‘:$)) such caps to cover X.
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Concluding remarks

f(n) < (2/v3+ o(1))"

Do we have h(n) < (2/+/3 4 0(1))"? (illumination/smaller homothetic
copies)

Do we have g(n) < (2/v/3 + o(1))"? (balls)

Thank you!
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