Convex bodies of constant width with exponential illumination number

Andriy Prymak
(joint work with Andrii Arman and Andrii Bondarenko)

University of Manitoba

Borsuk's number

Borsuk's number $f(n)$ is the smallest integer such that any set of diameter 1 in \mathbb{E}^{n} can be covered by $f(n)$ sets of smaller diameter.

Borsuk's number

Borsuk's number $f(n)$ is the smallest integer such that any set of diameter 1 in \mathbb{E}^{n} can be covered by $f(n)$ sets of smaller diameter.
$f(n) \geq n+1$ by considering regular simplex in \mathbb{E}^{n}.

Borsuk's number

Borsuk's number $f(n)$ is the smallest integer such that any set of diameter 1 in \mathbb{E}^{n} can be covered by $f(n)$ sets of smaller diameter.
$f(n) \geq n+1$ by considering regular simplex in \mathbb{E}^{n}.
Borsuk (1933) asked if $f(n)=n+1$ for all n ?

Borsuk's number

Borsuk's number $f(n)$ is the smallest integer such that any set of diameter 1 in \mathbb{E}^{n} can be covered by $f(n)$ sets of smaller diameter.
$f(n) \geq n+1$ by considering regular simplex in \mathbb{E}^{n}.
Borsuk (1933) asked if $f(n)=n+1$ for all n ?
Borsuk (1933): $f(1)=2$ and $f(2)=3$,
Perkal (1947): $f(3)=4$.

Borsuk's number

Borsuk's number $f(n)$ is the smallest integer such that any set of diameter 1 in \mathbb{E}^{n} can be covered by $f(n)$ sets of smaller diameter.
$f(n) \geq n+1$ by considering regular simplex in \mathbb{E}^{n}.
Borsuk (1933) asked if $f(n)=n+1$ for all n ?
Borsuk (1933): $f(1)=2$ and $f(2)=3$,
Perkal (1947): $f(3)=4$.
Asymptotic lower bound: $f(n) \geq c^{\sqrt{n}}$ for large n established by Kahn and Kalai (1993): $c \approx 1.203$,
Raigorodskii (1999): $\quad c \approx 1.2255$.

Borsuk's number

Borsuk's number $f(n)$ is the smallest integer such that any set of diameter 1 in \mathbb{E}^{n} can be covered by $f(n)$ sets of smaller diameter.
$f(n) \geq n+1$ by considering regular simplex in \mathbb{E}^{n}.
Borsuk (1933) asked if $f(n)=n+1$ for all n ?
Borsuk (1933): $f(1)=2$ and $f(2)=3$,
Perkal (1947): $f(3)=4$.
Asymptotic lower bound: $f(n) \geq c^{\sqrt{n}}$ for large n established by Kahn and Kalai (1993): $c \approx 1.203$,
Raigorodskii (1999): $\quad c \approx 1.2255$.
Smallest known n with $f(n)>n+1$ is $n=64$.

Asymptotic upper bound on $f(n)$

Schramm (1988), Bourgain and Lindenstrauss (1989):

$$
f(n) \leq\left(\sqrt{\frac{3}{2}}+o(1)\right)^{n}
$$

Asymptotic upper bound on $f(n)$

Schramm (1988), Bourgain and Lindenstrauss (1989):

$$
f(n) \leq\left(\sqrt{\frac{3}{2}}+o(1)\right)^{n}
$$

Bourgain and Lindenstrauss's results

Let $g(n)$ be the smallest number of balls of diameter <1 needed to cover an arbitrary set of diameter 1 in \mathbb{E}^{n}. Clearly, $f(n) \leq g(n)$.

Bourgain and Lindenstrauss's results

Let $g(n)$ be the smallest number of balls of diameter <1 needed to cover an arbitrary set of diameter 1 in \mathbb{E}^{n}. Clearly, $f(n) \leq g(n)$.

Rogers (1965): $g(n) \leq(\sqrt{2}+o(1))^{n}$
Danzer (1965): $g(n) \geq 1.003^{n}$

Bourgain and Lindenstrauss's results

Let $g(n)$ be the smallest number of balls of diameter <1 needed to cover an arbitrary set of diameter 1 in \mathbb{E}^{n}. Clearly, $f(n) \leq g(n)$.

Rogers (1965): $g(n) \leq(\sqrt{2}+o(1))^{n}$
Danzer (1965): $g(n) \geq 1.003^{n}$
Bourgain and Lindenstrauss (1989): $1.0645^{n} \leq g(n) \leq\left(\sqrt{\frac{3}{2}}+o(1)\right)^{n}$.

Illumination and covering

Let K be a convex body in \mathbb{E}^{n}. A point $x \in \partial K$ is illuminated by a direction $\xi \in \mathbb{S}^{n-1}$ if the ray $\{x+\xi t: t \geq 0\}$ intersects $\operatorname{int}(K)$.

Illumination and covering

Let K be a convex body in \mathbb{E}^{n}. A point $x \in \partial K$ is illuminated by a direction $\xi \in \mathbb{S}^{n-1}$ if the ray $\{x+\xi t: t \geq 0\}$ intersects $\operatorname{int}(K)$.

The illumination number $I(K)$ is the minimal number of directions such that every $x \in \partial K$ is illuminated by one of these directions.

Illumination and covering

Let K be a convex body in \mathbb{E}^{n}. A point $x \in \partial K$ is illuminated by a direction $\xi \in \mathbb{S}^{n-1}$ if the ray $\{x+\xi t: t \geq 0\}$ intersects $\operatorname{int}(K)$.

The illumination number $I(K)$ is the minimal number of directions such that every $x \in \partial K$ is illuminated by one of these directions.

Denote $h(K)$ to be the smallest number N such that K can be covered by N smaller homothetic copies of K.
Boltyanski (1960): $I(K)=h(K)$ for any convex body K.

Illumination and covering

Let K be a convex body in \mathbb{E}^{n}. A point $x \in \partial K$ is illuminated by a direction $\xi \in \mathbb{S}^{n-1}$ if the ray $\{x+\xi t: t \geq 0\}$ intersects $\operatorname{int}(K)$.

The illumination number $I(K)$ is the minimal number of directions such that every $x \in \partial K$ is illuminated by one of these directions.

Denote $h(K)$ to be the smallest number N such that K can be covered by N smaller homothetic copies of K.
Boltyanski (1960): $I(K)=h(K)$ for any convex body K.

Convex bodies of constant width

A convex body in \mathbb{E}^{n} has constant width, if its projection onto any line has the same length.

Convex bodies of constant width

A convex body in \mathbb{E}^{n} has constant width, if its projection onto any line has the same length. It is well-known that any set of diameter 1 is contained in a convex body of constant width 1 .

Convex bodies of constant width

A convex body in \mathbb{E}^{n} has constant width, if its projection onto any line has the same length. It is well-known that any set of diameter 1 is contained in a convex body of constant width 1 .

Convex bodies of constant width

A convex body in \mathbb{E}^{n} has constant width, if its projection onto any line has the same length. It is well-known that any set of diameter 1 is contained in a convex body of constant width 1 .

Convex bodies of constant width

A convex body in \mathbb{E}^{n} has constant width, if its projection onto any line has the same length. It is well-known that any set of diameter 1 is contained in a convex body of constant width 1 .

Therefore, it suffices to consider bodies of constant width to compute the Borsuk's number $f(n)$.

Schramm's upper bound on Borsuk's number

Define
$h(n):=\sup \left\{h(K)=I(K): K\right.$ is a convex body of constant width in $\left.\mathbb{E}^{n}\right\}$.
We have $f(n) \leq h(n)$.

Schramm's upper bound on Borsuk's number

Define
$h(n):=\sup \left\{h(K)=I(K): K\right.$ is a convex body of constant width in $\left.\mathbb{E}^{n}\right\}$.
We have $f(n) \leq h(n)$.
Schramm (1988): $h(n) \leq\left(\sqrt{\frac{3}{2}}+o(1)\right)^{n}$

Schramm's upper bound on Borsuk's number

Define
$h(n):=\sup \left\{h(K)=I(K): K\right.$ is a convex body of constant width in $\left.\mathbb{E}^{n}\right\}$.
We have $f(n) \leq h(n)$.
Schramm (1988): $h(n) \leq\left(\sqrt{\frac{3}{2}}+o(1)\right)^{n}$
The only known lower bound on $h(n)$ was the same as for $f(n)$: $h(n) \geq f(n) \geq 1.2255^{\sqrt{n}}$ for large n.

Schramm's upper bound on Borsuk's number

Define
$h(n):=\sup \left\{h(K)=I(K): K\right.$ is a convex body of constant width in $\left.\mathbb{E}^{n}\right\}$.
We have $f(n) \leq h(n)$.
Schramm (1988): $h(n) \leq\left(\sqrt{\frac{3}{2}}+o(1)\right)^{n}$
The only known lower bound on $h(n)$ was the same as for $f(n)$: $h(n) \geq f(n) \geq 1.2255^{\sqrt{n}}$ for large n.

Kalai (2015) asked: does there exist $C>1$ with $h(n) \geq C^{n}$ for large n ?

Main result

We answer the question of Kalai in the affirmative.

Theorem

$h(n) \geq(\cos (\pi / 14)+o(1))^{-n}$.

Main geometric ingredient

For fixed $x \in \mathbb{S}^{n-1}$ and $0<\alpha \leq \pi / 6$ define

$$
Q(x, \alpha):=\{x\} \cup\left\{y \in \mathbb{S}^{n-1}:\|x-y\|=2 \cos \alpha\right\}
$$

Main geometric ingredient

For fixed $x \in \mathbb{S}^{n-1}$ and $0<\alpha \leq \pi / 6$ define

$$
Q(x, \alpha):=\{x\} \cup\left\{y \in \mathbb{S}^{n-1}:\|x-y\|=2 \cos \alpha\right\} .
$$

For non-zero $x, y \in \mathbb{E}^{n}$, let

$$
\theta(x, y):=\arccos \left(\frac{x \cdot y}{\|x\|\|y\|}\right)
$$

For $x \in \mathbb{S}^{n-1}$ and $0<\alpha<\pi$, set

$$
C(x, \alpha):=\left\{y \in \mathbb{S}^{n-1}: \theta(x, y) \leq \alpha\right\} .
$$

Main geometric ingredient

For fixed $x \in \mathbb{S}^{n-1}$ and $0<\alpha \leq \pi / 6$ define

$$
Q(x, \alpha):=\{x\} \cup\left\{y \in \mathbb{S}^{n-1}:\|x-y\|=2 \cos \alpha\right\} .
$$

For non-zero $x, y \in \mathbb{E}^{n}$, let

$$
\theta(x, y):=\arccos \left(\frac{x \cdot y}{\|x\|\|y\|}\right) .
$$

For $x \in \mathbb{S}^{n-1}$ and $0<\alpha<\pi$, set

$$
C(x, \alpha):=\left\{y \in \mathbb{S}^{n-1}: \theta(x, y) \leq \alpha\right\}
$$

Lemma

Suppose $0<\alpha \leq \pi / 6, K$ is a convex body in \mathbb{E}^{n} s.t. diam $K=2 \cos \alpha$ and for some $x \in \mathbb{S}^{n-1}$ we have $Q(x, \alpha) \subset K$. Then $x \in \partial K$ and any direction $\xi \in \mathbb{S}^{d-1}$ illuminating x satisfies $\xi \in C\left(-x, \frac{\pi}{2}-\alpha\right)$.

Main geometric ingredient

Lemma

Suppose $0<\alpha \leq \pi / 6, K$ is a convex body in \mathbb{E}^{n} s.t. $\operatorname{diam} K=2 \cos \alpha$ and for some $x \in \mathbb{S}^{n-1}$ we have $Q(x, \alpha) \subset K$. Then $x \in \partial K$ and any direction $\xi \in \mathbb{S}^{d-1}$ illuminating x satisfies $\xi \in C\left(-x, \frac{\pi}{2}-\alpha\right)$.

Separation required to control the diameter

For a finite $X \subset \mathbb{S}^{n-1}$, let $\mathcal{W}(X):=\bigcup_{x \in X} Q(x, \alpha)$.

Separation required to control the diameter

For a finite $X \subset \mathbb{S}^{n-1}$, let $\mathcal{W}(X):=\bigcup_{x \in X} Q(x, \alpha)$.

Lemma

Suppose $0<\alpha \leq \pi / 6$ and $X \subset \mathbb{S}^{n-1}$.
(i) If $\theta(x, y) \leq \pi-2 \alpha$ for all $x, y \in X$, then $\operatorname{diam} X \leq 2 \cos \alpha$.
(ii) If $4 \alpha \leq \theta(x, y) \leq \pi-6 \alpha$ for all distinct $x, y \in X$, then $\operatorname{diam} \mathcal{W}(X) \leq 2 \cos \alpha$.

Main probabilistic lemma

Lemma

Suppose $0<\psi<\varphi<\frac{\pi}{2}$ are fixed. Then for every positive integer n there exists a collection $X=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{S}^{n-1}$ with $N=\left(\frac{1+o(1)}{\sin \varphi}\right)^{n}$ such that
(a) $\psi \leq \theta\left(x_{i}, x_{j}\right) \leq \pi-\psi$ for all $1 \leq i<j \leq N$.
(b) every point of \mathbb{S}^{n-1} is contained in at most $O(n \log n)$ spherical caps $C\left(x_{i}, \varphi\right), 1 \leq i \leq N$.

Main probabilistic lemma

Lemma

Suppose $0<\psi<\varphi<\frac{\pi}{2}$ are fixed. Then for every positive integer n there exists a collection $X=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{S}^{n-1}$ with $N=\left(\frac{1+o(1)}{\sin \varphi}\right)^{n}$ such that
(a) $\psi \leq \theta\left(x_{i}, x_{j}\right) \leq \pi-\psi$ for all $1 \leq i<j \leq N$.
(b) every point of \mathbb{S}^{n-1} is contained in at most $O(n \log n)$ spherical caps $C\left(x_{i}, \varphi\right), 1 \leq i \leq N$.

Proof: with appropriately selected $N^{\prime} \approx N$, sample N^{\prime} uniformly i.i.d. points from \mathbb{S}^{n-1}. By Böröczky and Wintsche (2003), which is the adaptation of the ideas of Erdős and Rogers $(1961 / 62)$ to \mathbb{S}^{n-1}, the resulting set satisfies (b) with high probability.

Main probabilistic lemma

Lemma

Suppose $0<\psi<\varphi<\frac{\pi}{2}$ are fixed. Then for every positive integer n there exists a collection $X=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{S}^{n-1}$ with $N=\left(\frac{1+o(1)}{\sin \varphi}\right)^{n}$ such that
(a) $\psi \leq \theta\left(x_{i}, x_{j}\right) \leq \pi-\psi$ for all $1 \leq i<j \leq N$.
(b) every point of \mathbb{S}^{n-1} is contained in at most $O(n \log n)$ spherical caps $C\left(x_{i}, \varphi\right), 1 \leq i \leq N$.

Proof: with appropriately selected $N^{\prime} \approx N$, sample N^{\prime} uniformly i.i.d. points from \mathbb{S}^{n-1}. By Böröczky and Wintsche (2003), which is the adaptation of the ideas of Erdős and Rogers $(1961 / 62)$ to \mathbb{S}^{n-1}, the resulting set satisfies (b) with high probability.

The expected number of pairs (i, j) not satisfying (a) can be shown to be at most $N^{\prime} / 4$, thus a point from each such pair can be removed to obtain the desired X.

Proof of the main result

Theorem

$h(n) \geq(\cos (\pi / 14)+o(1))^{-n}$.
Proof: use the probabilistic lemma with $\varphi=\frac{6 \pi}{14}+\epsilon, \psi=\frac{6 \pi}{14}$, where $\epsilon>0$.

Proof of the main result

> Theorem
> $h(n) \geq(\cos (\pi / 14)+o(1))^{-n}$.

Proof: use the probabilistic lemma with $\varphi=\frac{6 \pi}{14}+\epsilon, \psi=\frac{6 \pi}{14}$, where $\epsilon>0$. Construct $\mathcal{W}(X)=\bigcup_{x \in X} Q(x, \alpha)$ with $\alpha=\frac{\pi}{14}$.

Proof of the main result

> Theorem
> $h(n) \geq(\cos (\pi / 14)+o(1))^{-n}$.

Proof: use the probabilistic lemma with $\varphi=\frac{6 \pi}{14}+\epsilon, \psi=\frac{6 \pi}{14}$, where $\epsilon>0$. Construct $\mathcal{W}(X)=\bigcup_{x \in X} Q(x, \alpha)$ with $\alpha=\frac{\pi}{14}$. By the separation lemma (ii), $\operatorname{diam}(\mathcal{W}(X))=2 \cos \alpha$.

Proof of the main result

> Theorem
> $h(n) \geq(\cos (\pi / 14)+o(1))^{-n}$.

Proof: use the probabilistic lemma with $\varphi=\frac{6 \pi}{14}+\epsilon, \psi=\frac{6 \pi}{14}$, where $\epsilon>0$. Construct $\mathcal{W}(X)=\bigcup_{x \in X} Q(x, \alpha)$ with $\alpha=\frac{\pi}{14}$. By the separation lemma (ii), $\operatorname{diam}(\mathcal{W}(X))=2 \cos \alpha$. So there exists a body $K \supset \mathcal{W}(X)$ of constant width $2 \cos \alpha$.

Proof of the main result

> Theorem
> $h(n) \geq(\cos (\pi / 14)+o(1))^{-n}$.

Proof: use the probabilistic lemma with $\varphi=\frac{6 \pi}{14}+\epsilon, \psi=\frac{6 \pi}{14}$, where $\epsilon>0$. Construct $\mathcal{W}(X)=\bigcup_{x \in X} Q(x, \alpha)$ with $\alpha=\frac{\pi}{14}$. By the separation lemma (ii), $\operatorname{diam}(\mathcal{W}(X))=2 \cos \alpha$. So there exists a body $K \supset \mathcal{W}(X)$ of constant width $2 \cos \alpha$. Since $\varphi>\frac{\pi}{2}-\alpha$, (b) of the probabilistic lemma for $-X$ in combination with the main geometric lemma imply $I(K) \geq\left(\frac{1+o(1)}{\sin \varphi}\right)^{n}$.

Proof of the main result

Theorem
 $h(n) \geq(\cos (\pi / 14)+o(1))^{-n}$.

Proof: use the probabilistic lemma with $\varphi=\frac{6 \pi}{14}+\epsilon, \psi=\frac{6 \pi}{14}$, where $\epsilon>0$. Construct $\mathcal{W}(X)=\bigcup_{x \in X} Q(x, \alpha)$ with $\alpha=\frac{\pi}{14}$.
By the separation lemma (ii), $\operatorname{diam}(\mathcal{W}(X))=2 \cos \alpha$.
So there exists a body $K \supset \mathcal{W}(X)$ of constant width $2 \cos \alpha$.
Since $\varphi>\frac{\pi}{2}-\alpha$, (b) of the probabilistic lemma for $-X$ in combination with the main geometric lemma imply $I(K) \geq\left(\frac{1+o(1)}{\sin \varphi}\right)^{n}$.

Glazyrin (≥ 2023) noted that our bound $h(n) \geq 1.026^{n}$ can be improved to $h(n) \geq 1.047^{n}$ by a slight modification of the construction: choosing the bases of the cones from a concentric sphere of smaller radius.

New lower bound on $g(n)$

Recall that $g(n)$ is the smallest number of balls of diameter <1 needed to cover an arbitrary set of diameter 1 in \mathbb{E}^{n}.

Bourgain and Lindenstrauss (1989): $g(n) \geq 1.0645^{n}$

Theorem

$g(n) \geq(\sqrt{3} / 2+o(1))^{-n} \quad($ note that $2 / \sqrt{3} \approx 1.1547)$

New lower bound on $g(n)$

Recall that $g(n)$ is the smallest number of balls of diameter <1 needed to cover an arbitrary set of diameter 1 in \mathbb{E}^{n}.

Bourgain and Lindenstrauss (1989): $g(n) \geq 1.0645^{n}$

Theorem

$g(n) \geq(\sqrt{3} / 2+o(1))^{-n} \quad($ note that $2 / \sqrt{3} \approx 1.1547)$

Proof: use the probabilistic lemma with $\varphi=\frac{\pi}{3}+\epsilon, \psi=\frac{\pi}{3}$, where $\epsilon>0$.

New lower bound on $g(n)$

Recall that $g(n)$ is the smallest number of balls of diameter <1 needed to cover an arbitrary set of diameter 1 in \mathbb{E}^{n}.

Bourgain and Lindenstrauss (1989): $g(n) \geq 1.0645^{n}$

Theorem

$g(n) \geq(\sqrt{3} / 2+o(1))^{-n} \quad($ note that $2 / \sqrt{3} \approx 1.1547)$

Proof: use the probabilistic lemma with $\varphi=\frac{\pi}{3}+\epsilon, \psi=\frac{\pi}{3}$, where $\epsilon>0$. By the separation lemma (i) with $\alpha=\frac{\pi}{6}, \operatorname{diam} X \leq 2 \cos \frac{\pi}{6}=\sqrt{3}$.

New lower bound on $g(n)$

Recall that $g(n)$ is the smallest number of balls of diameter <1 needed to cover an arbitrary set of diameter 1 in \mathbb{E}^{n}.

Bourgain and Lindenstrauss (1989): $g(n) \geq 1.0645^{n}$

Theorem

$g(n) \geq(\sqrt{3} / 2+o(1))^{-n} \quad($ note that $2 / \sqrt{3} \approx 1.1547)$

Proof: use the probabilistic lemma with $\varphi=\frac{\pi}{3}+\epsilon, \psi=\frac{\pi}{3}$, where $\epsilon>0$. By the separation lemma (i) with $\alpha=\frac{\pi}{6}, \operatorname{diam} X \leq 2 \cos \frac{\pi}{6}=\sqrt{3}$. Any ball of diameter $\sqrt{3}$ intersects \mathbb{S}^{n-1} by a cap of radius $<\varphi$, so by (b) of the probabilistic lemma we need at least $\left(\frac{1+o(1)}{\sin \varphi}\right)^{n}$ such caps to cover X.

Concluding remarks

Conjecture

$f(n) \leq(2 / \sqrt{3}+o(1))^{n}$

Concluding remarks

Conjecture

$f(n) \leq(2 / \sqrt{3}+o(1))^{n}$

Question

Do we have $h(n) \leq(2 / \sqrt{3}+o(1))^{n}$? (illumination/smaller homothetic copies)

Concluding remarks

Conjecture
$f(n) \leq(2 / \sqrt{3}+o(1))^{n}$

Question

Do we have $h(n) \leq(2 / \sqrt{3}+o(1))^{n}$? (illumination/smaller homothetic copies)

Question

Do we have $g(n) \leq(2 / \sqrt{3}+o(1))^{n}$? (balls)

Concluding remarks

Conjecture
$f(n) \leq(2 / \sqrt{3}+o(1))^{n}$

Question

Do we have $h(n) \leq(2 / \sqrt{3}+o(1))^{n}$? (illumination/smaller homothetic copies)

Question

Do we have $g(n) \leq(2 / \sqrt{3}+o(1))^{n}$? (balls)

Thank you!

