Convex bodies of constant width with exponential illumination number

Andriy Prymak (joint work with Andrii Arman and Andrii Bondarenko)

University of Manitoba

 $f(n) \ge n+1$ by considering regular simplex in \mathbb{E}^n .

 $f(n) \ge n+1$ by considering regular simplex in \mathbb{E}^n .

Borsuk (1933) asked if f(n) = n + 1 for all n?

 $f(n) \ge n+1$ by considering regular simplex in \mathbb{E}^n .

Borsuk (1933) asked if f(n) = n + 1 for all n? Borsuk (1933): f(1) = 2 and f(2) = 3, Perkal (1947): f(3) = 4.

 $f(n) \ge n+1$ by considering regular simplex in \mathbb{E}^n .

Borsuk (1933) asked if
$$f(n) = n + 1$$
 for all n ?
Borsuk (1933): $f(1) = 2$ and $f(2) = 3$,
Perkal (1947): $f(3) = 4$.

Asymptotic lower bound: $f(n) \ge c^{\sqrt{n}}$ for large *n* established by Kahn and Kalai (1993): $c \approx 1.203$, Raigorodskii (1999): $c \approx 1.2255$.

 $f(n) \ge n+1$ by considering regular simplex in \mathbb{E}^n .

Borsuk (1933) asked if
$$f(n) = n + 1$$
 for all n ?
Borsuk (1933): $f(1) = 2$ and $f(2) = 3$,
Perkal (1947): $f(3) = 4$.

Asymptotic lower bound: $f(n) \ge c^{\sqrt{n}}$ for large *n* established by Kahn and Kalai (1993): $c \approx 1.203$, Raigorodskii (1999): $c \approx 1.2255$.

Smallest known *n* with f(n) > n + 1 is n = 64.

Asymptotic upper bound on f(n)

Schramm (1988), Bourgain and Lindenstrauss (1989):

$$f(n) \leq \left(\sqrt{\frac{3}{2}} + o(1)\right)^n$$

Schramm (1988), Bourgain and Lindenstrauss (1989):

$$f(n) \leq \left(\sqrt{\frac{3}{2}} + o(1)\right)^n$$

Let g(n) be the smallest number of balls of diameter < 1 needed to cover an arbitrary set of diameter 1 in \mathbb{E}^n . Clearly, $f(n) \le g(n)$. Let g(n) be the smallest number of balls of diameter < 1 needed to cover an arbitrary set of diameter 1 in \mathbb{E}^n . Clearly, $f(n) \le g(n)$.

Rogers (1965): $g(n) \le (\sqrt{2} + o(1))^n$ Danzer (1965): $g(n) \ge 1.003^n$ Let g(n) be the smallest number of balls of diameter < 1 needed to cover an arbitrary set of diameter 1 in \mathbb{E}^n . Clearly, $f(n) \le g(n)$.

Rogers (1965): $g(n) \le (\sqrt{2} + o(1))^n$ Danzer (1965): $g(n) \ge 1.003^n$

Bourgain and Lindenstrauss (1989): $1.0645^n \le g(n) \le \left(\sqrt{\frac{3}{2}} + o(1)\right)^n$.

Let K be a convex body in \mathbb{E}^n . A point $x \in \partial K$ is illuminated by a direction $\xi \in \mathbb{S}^{n-1}$ if the ray $\{x + \xi t : t \ge 0\}$ intersects int(K).

Illumination and covering

Let K be a convex body in \mathbb{E}^n . A point $x \in \partial K$ is illuminated by a direction $\xi \in \mathbb{S}^{n-1}$ if the ray $\{x + \xi t : t \ge 0\}$ intersects int(K).

The illumination number I(K) is the minimal number of directions such that every $x \in \partial K$ is illuminated by one of these directions.

Illumination and covering

Let K be a convex body in \mathbb{E}^n . A point $x \in \partial K$ is illuminated by a direction $\xi \in \mathbb{S}^{n-1}$ if the ray $\{x + \xi t : t \ge 0\}$ intersects int(K).

The illumination number I(K) is the minimal number of directions such that every $x \in \partial K$ is illuminated by one of these directions.

Denote h(K) to be the smallest number N such that K can be covered by N smaller homothetic copies of K.

Boltyanski (1960): I(K) = h(K) for any convex body K.

Illumination and covering

Let K be a convex body in \mathbb{E}^n . A point $x \in \partial K$ is illuminated by a direction $\xi \in \mathbb{S}^{n-1}$ if the ray $\{x + \xi t : t \ge 0\}$ intersects int(K).

The illumination number I(K) is the minimal number of directions such that every $x \in \partial K$ is illuminated by one of these directions.

Denote h(K) to be the smallest number N such that K can be covered by N smaller homothetic copies of K.

Boltyanski (1960): I(K) = h(K) for any convex body K.

A convex body in \mathbb{E}^n has constant width, if its projection onto any line has the same length.

A convex body in \mathbb{E}^n has constant width, if its projection onto any line has the same length. It is well-known that any set of diameter 1 is contained in a convex body of constant width 1.

A convex body in \mathbb{E}^n has constant width, if its projection onto any line has the same length. It is well-known that any set of diameter 1 is contained in a convex body of constant width 1.

A convex body in \mathbb{E}^n has constant width, if its projection onto any line has the same length. It is well-known that any set of diameter 1 is contained in a convex body of constant width 1.

A convex body in \mathbb{E}^n has constant width, if its projection onto any line has the same length. It is well-known that any set of diameter 1 is contained in a convex body of constant width 1.

Therefore, it suffices to consider bodies of constant width to compute the Borsuk's number f(n).

 $h(n) := \sup\{h(K) = I(K) : K \text{ is a convex body of constant width in } \mathbb{E}^n\}.$ We have $f(n) \le h(n)$.

 $h(n) := \sup\{h(K) = I(K) : K \text{ is a convex body of constant width in } \mathbb{E}^n\}.$ We have $f(n) \le h(n)$.

Schramm (1988):
$$h(n) \leq \left(\sqrt{rac{3}{2}} + o(1)
ight)^n$$

 $h(n) := \sup\{h(K) = l(K) : K \text{ is a convex body of constant width in } \mathbb{E}^n\}.$ We have $f(n) \le h(n)$.

Schramm (1988):
$$h(n) \leq \left(\sqrt{rac{3}{2}} + o(1)
ight)^n$$

The only known lower bound on h(n) was the same as for f(n): $h(n) \ge f(n) \ge 1.2255^{\sqrt{n}}$ for large n.

 $h(n) := \sup\{h(K) = I(K) : K \text{ is a convex body of constant width in } \mathbb{E}^n\}.$ We have $f(n) \le h(n)$.

Schramm (1988):
$$h(n) \leq \left(\sqrt{rac{3}{2}} + o(1)
ight)^n$$

The only known lower bound on h(n) was the same as for f(n): $h(n) \ge f(n) \ge 1.2255^{\sqrt{n}}$ for large n.

Kalai (2015) asked: does there exist C > 1 with $h(n) \ge C^n$ for large n?

We answer the question of Kalai in the affirmative.

Theorem $h(n) \ge (\cos(\pi/14) + o(1))^{-n}.$

Main geometric ingredient

Main geometric ingredient

For fixed
$$x \in \mathbb{S}^{n-1}$$
 and $0 < \alpha \le \pi/6$ define
 $Q(x, \alpha) := \{x\} \cup \{y \in \mathbb{S}^{n-1} : ||x - y|| = 2 \cos \alpha\}.$
For non-zero $x, y \in \mathbb{E}^n$, let
 $\theta(x, y) := \arccos(\frac{x \cdot y}{||x|| ||y||}).$
For $x \in \mathbb{S}^{n-1}$ and $0 < \alpha < \pi$, set
 $C(x, \alpha) := \{y \in \mathbb{S}^{n-1} : \theta(x, y) \le \alpha\}.$

Main geometric ingredient

For fixed
$$x \in \mathbb{S}^{n-1}$$
 and $0 < \alpha \le \pi/6$ define
 $Q(x, \alpha) := \{x\} \cup \{y \in \mathbb{S}^{n-1} : ||x - y|| = 2 \cos \alpha\}.$
For non-zero $x, y \in \mathbb{E}^n$, let
 $\theta(x, y) := \arccos(\frac{x \cdot y}{||x|| ||y||}).$
For $x \in \mathbb{S}^{n-1}$ and $0 < \alpha < \pi$, set
 $C(x, \alpha) := \{y \in \mathbb{S}^{n-1} : \theta(x, y) \le \alpha\}.$

Lemma

Suppose $0 < \alpha \le \pi/6$, K is a convex body in \mathbb{E}^n s.t. diam $K = 2 \cos \alpha$ and for some $x \in \mathbb{S}^{n-1}$ we have $Q(x, \alpha) \subset K$. Then $x \in \partial K$ and any direction $\xi \in \mathbb{S}^{d-1}$ illuminating x satisfies $\xi \in C(-x, \frac{\pi}{2} - \alpha)$.

Lemma

Suppose $0 < \alpha \le \pi/6$, K is a convex body in \mathbb{E}^n s.t. diam $K = 2 \cos \alpha$ and for some $x \in \mathbb{S}^{n-1}$ we have $Q(x, \alpha) \subset K$. Then $x \in \partial K$ and any direction $\xi \in \mathbb{S}^{d-1}$ illuminating x satisfies $\xi \in C(-x, \frac{\pi}{2} - \alpha)$.

For a finite $X \subset \mathbb{S}^{n-1}$, let $\mathcal{W}(X) := \bigcup_{x \in X} Q(x, \alpha)$.

For a finite $X \subset \mathbb{S}^{n-1}$, let $\mathcal{W}(X) := \bigcup_{x \in X} Q(x, \alpha)$.

Lemma

Suppose $0 < \alpha \le \pi/6$ and $X \subset \mathbb{S}^{n-1}$. (i) If $\theta(x, y) \le \pi - 2\alpha$ for all $x, y \in X$, then diam $X \le 2 \cos \alpha$. (ii) If $4\alpha \le \theta(x, y) \le \pi - 6\alpha$ for all distinct $x, y \in X$, then diam $\mathcal{W}(X) \le 2 \cos \alpha$.

Main probabilistic lemma

Lemma

Suppose $0 < \psi < \varphi < \frac{\pi}{2}$ are fixed. Then for every positive integer n there exists a collection $X = \{x_1, \ldots, x_N\} \subset \mathbb{S}^{n-1}$ with $N = \left(\frac{1+o(1)}{\sin \varphi}\right)^n$ such that

(a)
$$\psi \leq \theta(x_i, x_j) \leq \pi - \psi$$
 for all $1 \leq i < j \leq N$.

(b) every point of Sⁿ⁻¹ is contained in at most O(n log n) spherical caps C(x_i, φ), 1 ≤ i ≤ N.

Main probabilistic lemma

Lemma

Suppose $0 < \psi < \varphi < \frac{\pi}{2}$ are fixed. Then for every positive integer n there exists a collection $X = \{x_1, \ldots, x_N\} \subset \mathbb{S}^{n-1}$ with $N = \left(\frac{1+o(1)}{\sin \varphi}\right)^n$ such that

(a)
$$\psi \leq \theta(x_i, x_j) \leq \pi - \psi$$
 for all $1 \leq i < j \leq N$.

(b) every point of Sⁿ⁻¹ is contained in at most O(n log n) spherical caps C(x_i, φ), 1 ≤ i ≤ N.

Proof: with appropriately selected $N' \approx N$, sample N' uniformly i.i.d. points from \mathbb{S}^{n-1} . By Böröczky and Wintsche (2003), which is the adaptation of the ideas of Erdős and Rogers (1961/62) to \mathbb{S}^{n-1} , the resulting set satisfies (b) with high probability.

Main probabilistic lemma

Lemma

Suppose $0 < \psi < \varphi < \frac{\pi}{2}$ are fixed. Then for every positive integer n there exists a collection $X = \{x_1, \ldots, x_N\} \subset \mathbb{S}^{n-1}$ with $N = \left(\frac{1+o(1)}{\sin \varphi}\right)^n$ such that

(a)
$$\psi \leq \theta(x_i, x_j) \leq \pi - \psi$$
 for all $1 \leq i < j \leq N$.

(b) every point of Sⁿ⁻¹ is contained in at most O(n log n) spherical caps C(x_i, φ), 1 ≤ i ≤ N.

Proof: with appropriately selected $N' \approx N$, sample N' uniformly i.i.d. points from \mathbb{S}^{n-1} . By Böröczky and Wintsche (2003), which is the adaptation of the ideas of Erdős and Rogers (1961/62) to \mathbb{S}^{n-1} , the resulting set satisfies (b) with high probability.

The expected number of pairs (i, j) not satisfying (a) can be shown to be at most N'/4, thus a point from each such pair can be removed to obtain the desired X.

$$h(n) \ge (\cos(\pi/14) + o(1))^{-n}.$$

Proof: use the probabilistic lemma with $\varphi = \frac{6\pi}{14} + \epsilon$, $\psi = \frac{6\pi}{14}$, where $\epsilon > 0$.

$$h(n) \ge (\cos(\pi/14) + o(1))^{-n}.$$

Proof: use the probabilistic lemma with $\varphi = \frac{6\pi}{14} + \epsilon$, $\psi = \frac{6\pi}{14}$, where $\epsilon > 0$. Construct $\mathcal{W}(X) = \bigcup_{x \in X} Q(x, \alpha)$ with $\alpha = \frac{\pi}{14}$.

 $h(n) \ge (\cos(\pi/14) + o(1))^{-n}.$

Proof: use the probabilistic lemma with $\varphi = \frac{6\pi}{14} + \epsilon$, $\psi = \frac{6\pi}{14}$, where $\epsilon > 0$. Construct $\mathcal{W}(X) = \bigcup_{x \in X} Q(x, \alpha)$ with $\alpha = \frac{\pi}{14}$. By the separation lemma (ii), diam $(\mathcal{W}(X)) = 2 \cos \alpha$.

 $h(n) \ge (\cos(\pi/14) + o(1))^{-n}.$

Proof: use the probabilistic lemma with $\varphi = \frac{6\pi}{14} + \epsilon$, $\psi = \frac{6\pi}{14}$, where $\epsilon > 0$. Construct $\mathcal{W}(X) = \bigcup_{x \in X} Q(x, \alpha)$ with $\alpha = \frac{\pi}{14}$. By the separation lemma (ii), diam $(\mathcal{W}(X)) = 2 \cos \alpha$. So there exists a body $K \supset \mathcal{W}(X)$ of constant width $2 \cos \alpha$.

 $h(n) \ge (\cos(\pi/14) + o(1))^{-n}.$

Proof: use the probabilistic lemma with $\varphi = \frac{6\pi}{14} + \epsilon$, $\psi = \frac{6\pi}{14}$, where $\epsilon > 0$. Construct $\mathcal{W}(X) = \bigcup_{x \in X} Q(x, \alpha)$ with $\alpha = \frac{\pi}{14}$. By the separation lemma (ii), diam $(\mathcal{W}(X)) = 2 \cos \alpha$. So there exists a body $K \supset \mathcal{W}(X)$ of constant width $2 \cos \alpha$. Since $\varphi > \frac{\pi}{2} - \alpha$, (b) of the probabilistic lemma for -X in combination with the main geometric lemma imply $I(K) \ge \left(\frac{1+o(1)}{\sin \varphi}\right)^n$.

 $h(n) \ge (\cos(\pi/14) + o(1))^{-n}.$

Proof: use the probabilistic lemma with $\varphi = \frac{6\pi}{14} + \epsilon$, $\psi = \frac{6\pi}{14}$, where $\epsilon > 0$. Construct $\mathcal{W}(X) = \bigcup_{x \in X} Q(x, \alpha)$ with $\alpha = \frac{\pi}{14}$. By the separation lemma (ii), diam ($\mathcal{W}(X)$) = $2 \cos \alpha$. So there exists a body $K \supset \mathcal{W}(X)$ of constant width $2 \cos \alpha$. Since $\varphi > \frac{\pi}{2} - \alpha$, (b) of the probabilistic lemma for -X in combination with the main geometric lemma imply $I(K) \ge \left(\frac{1+o(1)}{\sin \varphi}\right)^n$.

Glazyrin (≥ 2023) noted that our bound $h(n) \geq 1.026^n$ can be improved to $h(n) \geq 1.047^n$ by a slight modification of the construction: choosing the bases of the cones from a concentric sphere of smaller radius.

Bourgain and Lindenstrauss (1989): $g(n) \ge 1.0645^n$

Theorem

$g(n) \ge (\sqrt{3}/2 + o(1))^{-n}$ (note that $2/\sqrt{3} \approx 1.1547$)

Bourgain and Lindenstrauss (1989): $g(n) \ge 1.0645^n$

Theorem

$$g(n) \ge (\sqrt{3}/2 + o(1))^{-n}$$
 (note that $2/\sqrt{3} \approx 1.1547$)

Proof: use the probabilistic lemma with $\varphi = \frac{\pi}{3} + \epsilon$, $\psi = \frac{\pi}{3}$, where $\epsilon > 0$.

Bourgain and Lindenstrauss (1989): $g(n) \ge 1.0645^n$

Theorem

$$g(n) \ge (\sqrt{3}/2 + o(1))^{-n}$$
 (note that $2/\sqrt{3} \approx 1.1547$)

Proof: use the probabilistic lemma with $\varphi = \frac{\pi}{3} + \epsilon$, $\psi = \frac{\pi}{3}$, where $\epsilon > 0$. By the separation lemma (i) with $\alpha = \frac{\pi}{6}$, diam $X \le 2 \cos \frac{\pi}{6} = \sqrt{3}$.

Bourgain and Lindenstrauss (1989): $g(n) \ge 1.0645^n$

Theorem

$$g(n) \ge (\sqrt{3}/2 + o(1))^{-n}$$
 (note that $2/\sqrt{3} \approx 1.1547$)

Proof: use the probabilistic lemma with $\varphi = \frac{\pi}{3} + \epsilon$, $\psi = \frac{\pi}{3}$, where $\epsilon > 0$. By the separation lemma (i) with $\alpha = \frac{\pi}{6}$, diam $X \le 2 \cos \frac{\pi}{6} = \sqrt{3}$. Any ball of diameter $\sqrt{3}$ intersects \mathbb{S}^{n-1} by a cap of radius $< \varphi$, so by (b) of the probabilistic lemma we need at least $\left(\frac{1+o(1)}{\sin \varphi}\right)^n$ such caps to cover X.

Conjecture

 $f(n) \leq (2/\sqrt{3} + o(1))^n$

Conjecture

 $f(n) \leq (2/\sqrt{3} + o(1))^n$

Question

Do we have $h(n) \le (2/\sqrt{3} + o(1))^n$? (illumination/smaller homothetic copies)

Conjecture

 $f(n) \leq (2/\sqrt{3} + o(1))^n$

Question

Do we have $h(n) \le (2/\sqrt{3} + o(1))^n$? (illumination/smaller homothetic copies)

Question

Do we have $g(n) \le (2/\sqrt{3} + o(1))^n$? (balls)

Conjecture

 $f(n) \leq (2/\sqrt{3} + o(1))^n$

Question

Do we have $h(n) \le (2/\sqrt{3} + o(1))^n$? (illumination/smaller homothetic copies)

Question

Do we have $g(n) \le (2/\sqrt{3} + o(1))^n$? (balls)

Thank you!