On equicontinuity of families of mappings with one normalization condition by the prime ends

Evgeny A. Sevost'yanov^{1,2}, Nataliya S. Ilkevych¹

¹Zhytomyr Ivan Franko State University, Zhytomyr, Ukraine; ²Institute of Applied Mathematics and Mechanics of NAS of Ukraine, Slov'yans'k

2023

$$D \ni x = (x_1, \dots, x_n) \mapsto f(x) = (f_1(x), \dots, f_n(x)) \in f(D)$$
 (1)

Mappings $f: D \to \mathbb{R}^n$

 $D \subset \mathbb{R}^n$ is a domain $\Leftrightarrow D$ is connected and open set in \mathbb{R}^n

Figure 1: A mapping of a domain D

Moduli and lengths

 $\gamma:[a,b]\to\mathbb{R}^n,\ n\geqslant 2,$ length is the supremum of

$$\sum_{i=1}^{k} |\gamma(t_i) - \gamma(t_{i-1})|$$

over all partitions $a = t_0 \leqslant t_1 \leqslant \ldots \leqslant t_k = b$ of the interval [a, b].

$$\rho: \mathbb{R}^n \to [0, \infty],$$

$$\rho \in \operatorname{adm} \Gamma \Leftrightarrow \int_{\gamma} \rho \, ds \geqslant 1 \tag{2}$$

for all (locally rectifiable) $\gamma \in \Gamma$.

Moduli and lengths

 $p \geqslant 1$, the p-modulus of Γ is

$$M_{p}(\Gamma) = \inf_{\rho \in \operatorname{adm} \Gamma} \int_{\mathbb{R}^{n}} \rho^{p}(x) \, dm(x) \,.$$

$$M(\Gamma) := M_{n}(\Gamma)$$

$$\Gamma \longrightarrow M_{p}(\Gamma)$$

$$\Gamma$$

Figure 2: The modulus as real function of family of paths

Paths joining two sets

 $\Gamma(E,F,D)$: the family of all continuous curves $\gamma:[0,1]\to\mathbb{R}^n$ such that $\gamma(0) \in E, \ \gamma(1) \in F, \ \text{and} \ \gamma(t) \in D \ \text{for all} \ t \in (0,1).$

Figure 3: Families of paths joining two fixed sets

The inverse Poletsky inequality

Let $x_0 \in \overline{D}$, $x_0 \neq \infty$.

$$B(x_0, r) = \{x \in \mathbb{R}^n : |x - x_0| < r\}, \quad \mathbb{B}^n = B(0, 1),$$

$$S(x_0, r) = \{x \in \mathbb{R}^n : |x - x_0| = r\}, S_i = S(x_0, r_i), \quad i = 1, 2,$$

$$A = A(x_0, r_1, r_2) = \{x \in \mathbb{R}^n : r_1 < |x - x_0| < r_2\}.$$

$$(4)$$

Let $f:D\to\mathbb{R}^n$, $n\geqslant 2$, and let $Q:\mathbb{R}^n\to[0,\infty]$ be a Lebesgue measurable function such that $Q(y) \equiv 0$ for $y \in \mathbb{R}^n \setminus f(D)$. Let $A = A(y_0, r_1, r_2)$. Let $\Gamma_f(y_0,r_1,r_2)$ denotes the family of all paths $\gamma:[a,b]\to D$ such that $f(\gamma) \in \Gamma(S(y_0, r_1), S(y_0, r_2), A(y_0, r_1, r_2)), \text{ i.e., } f(\gamma(a)) \in S(y_0, r_1), f(\gamma(b)) \in S(y_0, r_1), f(\gamma(b)), f(\gamma(b)) \in S(y_0, r_1), f(\gamma(b)) \in S(y_0, r_1), f(\gamma(b))$ $S(y_0, r_2)$, and $f(\gamma(t)) \in A(y_0, r_1, r_2)$ for any a < t < b. We say that f satisfies the inverse Poletsky inequality at $y_0 \in f(D)$ if the relation

$$M(\Gamma_f(y_0, r_1, r_2)) \le \int_A Q(y) \cdot \eta^n(|y - y_0|) \, dm(y)$$
 (5)

holds for any $0 < r_1 < r_2 < r_0 := \sup_{y \in D'} |y - y_0|$ and any Lebesgue measurable function $\eta:(r_1,r_2)\to [0,\infty]$ such that

$$\int_{r_1}^{r_2} \eta(r) dr \geqslant 1. \tag{6}$$

The inverse Poletsky inequality

Figure 4: Illustration of the action of a mapping with the inverse Poletsky inequality

The inverse Poletsky inequality

ullet If f is a quairegular, then f satisfies (5) with $Q=K\cdot N(f,D),$ where

$$N(f,D) \,=\, \sup_{y\,\in\,\mathbb{R}^n}\, N(y,f,D)\,, N(y,f,D) \,=\, \mathrm{card}\,\left\{x\in D: f(x)=y\right\}\,,$$

and $K \geqslant 1$ is defined as

$$K = \operatorname{ess\,sup} K_O(x, f), \qquad (7)$$

$$K_O(x,f) = \|f'(x)\|^n / J(x,f)$$
 (8)

for $J(x,f)\neq 0;$ $K_O(x,f)=1$ for f'(x)=0, and $K_O(x,f)=\infty$ for $f'(x)\neq 0,$ but J(x,f)=0

• If $f \in W^{1,n}_{loc}(D)$ with $K_O(x,f) \in L^{n-1}_{loc}(D)$, then f satisfies (5) with $Q := K_I(y,f^{-1}) := \sum_{x \in f^{-1}(y)} K_O(x,f)^2$

¹see, e.g. Theorem 3.2 in [Martio, O., S. Rickman, and J. Vaisala: Definitions for quasiregular mappings. - Ann. Acad. Sci. Fenn. Ser. A1 448, 1969, 1-40] or Theorem 6.7.II in [Rickman, S.: Quasiregular mappings. - Springer-Verlag, Berlin etc., 1993]

²see e.g. [MARTIO, O., V. RYAZANOV, U. SREBRO, AND E. YAKUBOV: Moduli in modern mapping theory. - Springer Science + Business Media, LLC, New York, 2009)

Cuts and chains

 ω - open set in \mathbb{R}^k , $k=1,\ldots,n-1$.

k-dimensional surface: $\sigma:\omega\to\mathbb{R}^n$

Surface: k=n-1

Jordan surface: $\sigma: \omega \to D$, $\sigma(z_1) \neq \sigma(z_2)$ for $z_1 \neq z_2$.

$$\sigma \sim \sigma(\omega) \subset \mathbb{R}^n$$
, $\overline{\sigma} \sim \overline{\sigma(\omega)}$, $\partial \sigma \sim \overline{\sigma(\omega)} \setminus \sigma(\omega)$ (9)

Cut: σ is Jordan surface which splits D,

$$\left| \partial \sigma \cap D = \varnothing, \quad \partial \sigma \cap \partial D \neq \varnothing \right|.$$
 (10)

Chains and ends

Chain: $\sigma_1, \sigma_2, \ldots, \sigma_m, \ldots$

- (i) $\overline{\sigma_i} \cap \overline{\sigma_j} = \emptyset$ for all $i \neq j$, i, j = 1, 2, ...;
- (ii) σ_{m-1} and σ_{m+1} are contained in different components of $D\setminus\sigma_m$;
- (iii) $\cap d_m = \emptyset$, where d_m is a component of $D \setminus \sigma_m$, containing σ_{m+1} .

Figure 5: Chains and correspondence between them under some mapping

Ends and prime ends

- $\{\sigma_m\}$ and $\{\sigma_k'\}$ are **equivalent** \Leftrightarrow
- 1) d_m contains all d_k' except finitely many, $\forall \ m=1,2,\ldots$,
- 2) d_k' contains all d_k' except finitely many, $\forall \ k=1,2,\ldots$,

End \equiv equivalence class of chains of cuts of D. End K is a **prime end** $\equiv K$ contains $\{\sigma_m\}$: for some continuum $C \subset D$

$$\lim_{m \to \infty} M(\Gamma(C, \sigma_m, D)) = 0$$
(11)

Figure 6: A prime end in some domain ◀ ♬ ▶ ◀ 毫 ▶ ■ ● ❤️ ♥ ♥

Locally quasiconformal boundary

 ∂D is **locally quasiconformal** $\Leftrightarrow \forall x_0 \in \partial D \exists U \supset \{x_0\}$ and a quasiconformal mapping φ of U onto $\mathbb{B}^n: \varphi(\partial D \cap U) = \mathbb{B}^n_+$

Figure 7: A domain with a locally quasiconformal boundary

Regular domains

D is **regular** \Leftrightarrow D is bounded and D can be mapped quasiconformally onto a domain with a locally quasiconformal boundary

Figure 8: An example of a regular domain

 \overline{D}_P is the completion of a regular domain D by its prime ends, g_0 is a quasiconformal mapping of D_0 with locally quasiconformal boundary onto D

$$\rho_0(p_1, p_2) = |\widetilde{g_0}^{-1}(p_1) - \widetilde{g_0}^{-1}(p_2)|$$
(12)

 $\widetilde{g_0}$ is the extension of g_0 onto $\overline{D_0}$

Weakly flat boundaries

We say that ∂D is weakly flat at a point $x_0 \in \partial D$ if, for every neighborhood U of the point x_0 and every number P>0, there is a neighborhood $V\subset U$ of x_0 such that

$$M(\Gamma(E, F, D)) \geqslant P$$
 (13)

for all continua E and F in D intersecting ∂U and ∂V .

Figure 9: A domain with weakly flat boundary

The main results

Given domains $D, D' \subset \mathbb{R}^n$, $n \geq 2$, points $a \in D$, $b \in D'$ and a Lebesgue measurable function $Q: D' \to [0, \infty]$ denote $\mathfrak{S}_{a,b,\mathcal{O}}(D, D')$ a family of all open discrete and closed mappings f of D onto D', satisfying the relation (5) for any $y_0 \in D'$, while f(a) = b. The following statement holds.

Theorem 1

Assume that, D has a weakly flat boundary, any component of which does not degenerate into a point. If $Q \in L^1(D')$ and D' is regular, then any $f \in$ $\mathfrak{S}_{a,b,O}(D,D')$ has a continuous extension $\overline{f}:\overline{D}\to \overline{D'}_P, \overline{f}(\overline{D})=\overline{D'}_P,$ and in addition, a family $\mathfrak{S}_{a,b,\mathcal{Q}}(\overline{D},\overline{D'})$ which consists of all extended mappings $\overline{f}: \overline{D} \to \overline{D'}_P$, is equicontinuous in \overline{D} .

Publications

The results of the report are published in Ukrainian Mathematical Journal:

Ilkevych N.S., Sevost'yanov E.A. On equicontinuity of the families of mappings with one normalization condition in terms of prime ends. *Ukrainian Mathematical Journal*, 74 (6): 936–945, 2022.

Figure 10: Ukrainian Mathematical Journal

It is over! Thank you very much!