Poincaré-Reeb graphs of real algebraic domains

Miruna-Ștefana Sorea

SISSA, Trieste, Italy and ULBS, Sibiu, Romania

Algebraic and Geometric Methods of Analysis (AGMA 2023)

May 30, 2023

• **objects:** closed topological subsurfaces of a real affine plane whose boundary consists of disjoint smooth connected components of real algebraic plane curves: **algebraic domains** \mathcal{D} .

Algebraic domains

Example

$$\overline{C_1}$$
 of equation $(y^2 - (x - 1)(x - 2)(x - 3) = 0)$
 $\overline{C_2}$ of equation $(y^2 - x(x - 4)(x - 5) = 0)$
A ring surface:

Setting and goals

• goal: measure the non-convexity of algebraic domains \mathcal{D} .

Setting and goals

- goal: measure the non-convexity of algebraic domains \mathcal{D} .
 - -> in a certain direction of projection.

How to measure non-convexity?

Idea: collapse all vertical segments contained in the algebraic domain

How to measure non-convexity?

Idea: collapse all vertical segments contained in the algebraic domain

 \rightsquigarrow construct the Poincaré-Reeb graph associated to an algebraic domain and to a direction of projection.

Overview

• First part: strict local minima

- Second part: a purely topological description in which our construction of Poincaré-Reeb graphs can be applied
- Third part: real algebraic domains

Miruna-Ștefana Sorea (SISSA)

References:

Arnaud Bodin, Patrick Popescu-Pampu, and Miruna-Ştefana Sorea. "Poincaré-Reeb graphs of real algebraic domains". In: <i>Revista Matemàtica</i> <i>Complutense</i> (2023). url: https: //link.springer.com/article/10.1007/s13163- 023-00469-y (cit. on p. 68).
Étienne Ghys. A singular mathematical promenade. ENS Éditions, Lyon, 2017, pp. viii+302. url: http://ghys.perso.math.cnrs.fr/bricabrac/ promenade.pdf (cit. on pp. 49, 50).
Miruna-Ştefana Sorea. "The shapes of level curves of real polynomials near strict local minima". PhD thesis. Université de Lille, 2018. url: https: //hal.archives-ouvertes.fr/tel-01909028v1 (cit. on pp. 20, 21, 29, 31, 32, 46).
Miruna-Ştefana Sorea. "Constructing Separable Arnold Snakes of Morse Polynomials". In: <i>Portugaliae</i> <i>Mathematica</i> (2020). doi: 10.4171/PM/2050 (cit. on p. 45).
Miruna-Ştefana Sorea. "Measuring the local non-convexity of real algebraic curves". In: Journal of Symbolic Computation (2022). doi: 10.1016/j.jsc.2020.07.017 (cit. on pp. 17, 18).
Miruna-Ştefana Sorea. "Permutations encoding the local shape of level curves of real polynomials via generic projections". In: Annales de l'Institut Fourier (2022). doi: 10.5802/aif.3479 (cit. on p. 24).

Miruna-Ștefana Sorea (SISSA)

Table of Contents

Part I-Effective construction in the case of strict local minima

- Part II-Poincaré-Reeb graphs of domains of (weakly) finite type
- ③ Part III-Realization of Poincaré-Reeb graphs by algebraic domains

- objects: polynomial functions $f : \mathbb{R}^2 \to \mathbb{R}$, f(0,0) = 0 such that O is a strict local minimum;
- goal: study the real Milnor fibres of the polynomial (i.e. the level curves (f(x, y) = ε), for 0 < ε ≪ 1, in a small enough neighbourhood of the origin).

$$f(x,y) = x^2 + y^2$$

Whenever the origin is a **Morse** strict local minimum the **small enough** level curves are boundaries of **convex** topological disks.

Question (Giroux asked Popescu-Pampu, 2004)

Are the small enough level curves of f near strict local minima always boundaries of **convex** disks?

Counterexample by M. Coste: $f(x, y) = x^2 + (y^2 - x)^2$.

- Problem: understand these **non-convexity** phenomena.
- Subproblem 1: construct non-Morse strict local minima whose nearby small levels are far from being convex.

Question

What **combinatorial object** can encode the shape by **measuring the non-convexity** of a smooth and compact connected component of an algebraic curve in \mathbb{R}^2 ?

The Poincaré-Reeb graph

associated to a curve and to a direction x

Definition

Two points of \mathcal{D} are equivalent if they belong to the same connected component of a fibre of the projection $\Pi : \mathbb{R}^2 \to \mathbb{R},$ $\Pi(x, y) := x.$

The Poincaré-Reeb tree

Theorem ([Sor22a])

The Poincaré-Reeb graph is a **transversal tree**: it is a **plane tree** whose open edges are **transverse to the foliation** induced by the function x; its vertices are endowed with a **total preorder** relation induced by the function x.

The asymptotic Poincaré-Reeb tree

-small enough level curves; -near a strict local minimum.

Theorem ([Sor22a])

The asymptotic Poincaré-Reeb tree **stabilises**. It is a **rooted** tree; the total preorder relation on its vertices is **strictly monotone** on each geodesic starting from the root. Impossible asymptotic configuration:

- Characterise all possible topological types of asymptotic Poincaré-Reeb trees.
- Construct a family of polynomials realising a large class of transversal trees as their Poincaré-Reeb trees.

Main result - Part I

- introduction of new combinatorial objects;
- polar curve, discriminant curve;
- genericity hypotheses (x > 0);
- univariate case: explicit construction of separable snakes;
- a result of realisation of a large class of Poincaré-Reeb trees.

Main result - Part I

- introduction of new combinatorial objects;
- polar curve, discriminant curve;
- genericity hypotheses (x > 0);
- univariate case: explicit construction of separable snakes;
- a result of realisation of a large class of Poincaré-Reeb trees.

Theorem ([Sor18])

Given any **separable positive generic rooted transversal tree**, we construct the equation of a real bivariate polynomial with isolated minimum at the origin which realises the given tree as a Poincaré-Reeb tree.

Tool 1 : The polar curve

$$\Gamma(f,x) := \left\{ (x,y) \in \mathbb{R}^2 \ \Big| \ \frac{\partial f}{\partial y}(x,y) = 0 \right\}$$

It is the set of points where the tangent to a level curve is vertical.

Tool 2 : Choosing a generic projection

Avoid vertical bitangents:

The generic asymptotic Poincaré-Reeb tree

Theorem ([Sor22b])

In the asymptotic case, if the direction x is generic, then we have a **total order** relation and a **complete binary** tree.

Tool 3: The discriminant locus

$$\Phi: \mathbb{R}^2_{x,y} \to \mathbb{R}^2_{x,z}, \Phi(x,y) = \Big(x, f(x,y)\Big).$$

The critical locus of Φ is the polar curve $\Gamma(f, x)$.

The discriminant locus of Φ is the critical image $\Delta = \Phi(\Gamma)$.

Genericity hypotheses

The family of polynomials that we construct satisfies the following two genericity hypotheses:

• the curve Γ_+ is **reduced**;

• the map $\Phi_{|\Gamma_+}: \Gamma_+ \to \Delta_+$ is a homeomorphism.

1. Positive asymptotic snake

To any positive (i.e. for x > 0) generic asymptotic Poincaré-Reeb tree we can associate a permutation σ , called the **positive asymptotic snake**.

2. Arnold's snake (one variable)

One can associate a permutation to a Morse polynomial, by considering two total order relations on the set of its critical points: Arnold's snake.

2. Arnold's snake (one variable)

The study of asymptotic forms of **the graphs of one variate polynomials** $f(x_0, y)$, for x_0 tending to zero.

Theorem ([Sor18]) $\sigma = \tau$.

Idea of the proof

The interplay between the polar curve and the discriminant curve:

$$\sigma = \tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

Miruna-Ștefana Sorea (SISSA)

Poincaré-Reeb graphs

The construction

Subquestion

Given a generic rooted transversal tree, can we construct the equation of a real bivariate polynomial with isolated minimum at the origin which realises the given tree as a Poincaré-Reeb tree?

Subquestion

Given a generic rooted transversal tree, can we construct the equation of a real bivariate polynomial with isolated minimum at the origin which realises the given tree as a Poincaré-Reeb tree?

Theorem ([Sor18])

We give a **positive constructive answer**: we construct a family of polynomials that realise all **separable** positive generic rooted transversal trees.

Separable permutations

 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 7 & 4 & 5 & 1 & 3 & 2 \end{pmatrix} = ((\boxdot \oplus \boxdot) \ominus (\boxdot \oplus \boxdot)) \ominus (\boxdot \oplus (\boxdot \oplus \boxdot)).$

Nonseparable permutation - example

Separable tree

Definition

A positive generic rooted transversal tree is **separable** if its associated permutation is separable.

Passing to the univariate case

Question

Given a separable snake σ , is it possible to construct a Morse polynomial $Q : \mathbb{R} \to \mathbb{R}$ that realises σ ?

Example

The contact tree

$$a_1(x) = 0,$$

 $a_2(x) = x^2,$
 $a_3(x) = x^2 + x^3,$
 $a_4(x) = x^1,$
 $a_5(x) = x^1 + x^2.$

Answer in the univariate case

Theorem ([Sor20])

Consider $m \in \mathbb{N}$ and fix a separable (m + 1)-snake $\sigma : \{1, 2, \ldots, m + 1\} \rightarrow \{1, 2, \ldots, m + 1\}$ such that $\sigma(m) > \sigma(m + 1)$. Construct the polynomials $a_i(x) \in \mathbb{R}[x]$ such that their contact tree is one of the binary separating trees of σ . Let $Q_x(y) \in \mathbb{R}[x][y]$ be

$$Q_x(y) := \int_0^y \prod_{i=1}^{m+1} (t - a_i(x)) \mathrm{d}t.$$

Then $Q_x(y)$ is a one variable Morse polynomial and for sufficiently small x > 0, the Arnold snake associated to $Q_x(y)$ is σ .

Miruna-Ștefana Sorea (SISSA)

Construction of the desired bivariate polynomial f

Theorem ([Sor18])

Let σ be a separable (m + 1)-snake, with m an even integer, $\sigma(m) > \sigma(m + 1)$. Let $f \in \mathbb{R}[x, y]$ be constructed as follows: (a) construct $Q_x(y) \in \mathbb{R}[x][y]$,

$$Q_x(y) := \int_0^y \prod_{i=1}^{m+1} (t - a_i(x)) \mathrm{d}t,$$

by choosing the polynomials $a_i(x) \in \mathbb{R}[x]$ such that their contact tree is one of the binary separating trees of σ .

(b) take $f(x, y) := x^2 + Q_x(y)$. Then f has a strict local minimum at the origin and the positive asymptotic snake of f is the given σ .

Miruna-Ștefana Sorea (SISSA)

Properties of f

$$f(x,y) := x^2 + \int_0^y \prod_{i=1}^{m+1} (t - a_i(x)) dt.$$

- Its positive generic asymptotic Poincaré-Reeb tree:

- It has a strict local minimum at the origin:

Pairwise distinct polynomials $a_i(x) \in \mathbb{R}[x]$ that pass through a common zero at the origin

¹É. Ghys - A singular mathematical promenade, 2017

Poincaré-Reeb graphs

Positive-negative contact trees (one variable)³

²Picture from [Ghy17] ³É. Ghys - A singular mathematical promenade, 2017 Miruna-Stefana Sorea (SISSA) Poincaré-Reeb graphs

Positive-negative contact trees (one variable)³

²Picture from [Ghy17] ³É. Ghys - A singular mathematical promenade, 2017 <u>Miruna-Stefana Sorea</u> (SISSA) Poincaré-Reeb graphs

Flip-Flop Algorithm

Miruna-Ștefana Sorea (SISSA)

Poincaré-Reeb graphs

Table of Contents

- Part I-Effective construction in the case of strict local minima
- Part II-Poincaré-Reeb graphs of domains of (weakly) finite type
- ③ Part III-Realization of Poincaré-Reeb graphs by algebraic domains

General context

Miruna-Ștefana Sorea (SISSA)

 $-\!\!>$ motivation: after the collapsing procedure, we end up with a new vertical plane

 $-\!\!>$ motivation: after the collapsing procedure, we end up with a new vertical plane

-> a pair (\mathcal{P}, π) such that \mathcal{P} is a topological space homeomorphic to \mathbb{R}^2 , endowed with an orientation, and $\pi : \mathcal{P} \to \mathbb{R}$ is a locally trivial topological fibration $-\!\!>$ motivation: after the collapsing procedure, we end up with a new vertical plane

-> a pair (\mathcal{P}, π) such that \mathcal{P} is a topological space homeomorphic to \mathbb{R}^2 , endowed with an orientation, and $\pi : \mathcal{P} \to \mathbb{R}$ is a locally trivial topological fibration

-> the canonical affine vertical plane is $(\mathbb{R}^2, x : \mathbb{R}^2 \to \mathbb{R})$

The topological critical set

 $\Sigma_{top}(\mathcal{C})$: points $p \in \mathcal{C}$ in whose neighborhoods the restriction $\pi_{|_{\mathcal{C}}}$ is not a local homeomorhism onto its image.

Counterexample:

Domain of finite type

 (\mathcal{P},π) is a vertical plane $\mathcal{D}\subset\mathcal{P}$ is a closed subset homeomorphic to a surface with non-empty boundary \mathcal{C}

Definition

We say that \mathcal{D} is a **domain of finite type** in (\mathcal{P}, π) if:

- 1) the restriction $\pi_{|_{\mathcal{D}}} : \mathcal{D} \to \mathbb{R}$ is proper;
- 2 the topological critical set $\Sigma_{top}(\mathcal{C})$ is finite.

A domain of finite type is **generic** if no two topological critical points of its boundary lie on the same vertical line.

Miruna-Ștefana Sorea (SISSA)

Poincaré-Reeb graphs

Domains which are not of finite type:

Vertical equivalence

X and X' subsets of the vertical planes (\mathcal{P}, π), resp. (\mathcal{P}', π'). Definition

We say that $X \approx_{v} X'$, if there exist orientation preserving homeomorphisms $\Phi : \mathcal{P} \to \mathcal{P}'$ and $\psi : \mathbb{R} \to \mathbb{R}$ such that $\Phi(X) = X'$ and the following diagram is commutative:

Consider the canonical affine vertical plane (\mathbb{R}^2, x) .

The vertical equivalence preserves the horizontal order:

if
$$x(P_i) < x(P_j)$$
 and $P'_i = \Phi(P_i)$, $P'_j = \Phi(P_j)$,
then $x(P'_i) < x(P'_j)$.

-> important for topological critical points.

Proposition

Let \mathcal{D} and \mathcal{D}' be compact connected domains of finite type in vertical planes, with Poincaré–Reeb graphs G and G'. Assume that both are generic. Then:

$$\mathcal{D} \approx_{v} \mathcal{D}' \iff G \approx_{v} G'.$$

Domains which are not vertically equivalent

Miruna-Ștefana Sorea (SISSA)

Other invariants?

Two generic real algebraic domains homeomorphic to discs with the same permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 3 & 6 & 2 & 4 \end{pmatrix}$, but which are not vertically equivalent.

Proposition

Let \mathcal{D} be a compact domain of finite type in a vertical plane. Then \mathcal{D} and its Poincaré–Reeb graph have the same number of connected components and the same Euler characteristic.

Idea of the proof: integration with respect to the Euler characteristic.

Proposition

If $\mathcal{D} \subset (\mathcal{P}, \pi)$ is (homeomorphic to) a disk, then the Poincaré–Reeb graph of \mathcal{D} is a tree.

Table of Contents

- Part I-Effective construction in the case of strict local minima
- Part II-Poincaré-Reeb graphs of domains of (weakly) finite type
- ③ Part III-Realization of Poincaré-Reeb graphs by algebraic domains

Theorem (Bodin, Popescu-Pampu, Sorea, 2022)

Any **compact connected generic transversal** graph can be realized as a Poincaré–Reeb graph of an algebraic domain.^a

^a[BPPS23], https://arxiv.org/pdf/2207.06871.pdf

Strategy of the proof

• Step 1: we realize the generic transversal graph *G* as a Poincaré–Reeb graph of a finite type domain defined by a smooth function;

Strategy of the proof

 Step 1: we realize the generic transversal graph G as a Poincaré–Reeb graph of a finite type domain defined by a smooth function;

• Step 2: we use a Weierstrass-type theorem that approximates any smooth function by a polynomial function;

Strategy of the proof

• Step 1: we realize the generic transversal graph *G* as a Poincaré–Reeb graph of a finite type domain defined by a smooth function;

• Step 2: we use a Weierstrass-type theorem that approximates any smooth function by a polynomial function;

• Step 3: we adapt this Weierstrass-type theorem in order to control vertical tangents, and we realize *G* as the Poincaré–Reeb graph of a generic finite type algebraic domain.

Miruna-Ștefana Sorea (SISSA)

Domains of weakly finite type

Definition

We say that \mathcal{D} is a **domain of weakly finite type** if:

- 1 the restriction $\pi_{|_{\mathcal{C}}} : \mathcal{C} \to \mathbb{R}$ is proper;
- **2** the topological critical set $\Sigma_{top}(\mathcal{C})$ is finite.

Domains of weakly finite type

Definition

We say that \mathcal{D} is a **domain of weakly finite type** if:

- 1 the restriction $\pi_{|_{\mathcal{C}}} : \mathcal{C} \to \mathbb{R}$ is proper;
- **2** the topological critical set $\Sigma_{top}(\mathcal{C})$ is finite.

A domain of weakly finite type is called **generic** if no two topological critical points of C lie on the same vertical line.

Miruna-Ștefana Sorea (SISSA)

Poincaré-Reeb graphs

Non-compact Poincaré–Reeb graphs

When C is homeomorphic to a line, we distinguish three cases, depending on the position of D and of the branches of C.

Miruna-Ștefana Sorea (SISSA)

Poincaré-Reeb graphs

Algebraic realization - non-compact & simply connected

Theorem (Bodin, Popescu-Pampu, Sorea, 2022)

Let G be a connected, non-compact, generic, transversal tree. Let G' be the compact tree obtained from G. If G' can be realized by a connected real algebraic curve, then G can be realized as the Poincaré–Reeb graph of a simply connected, non-compact algebraic domain in (\mathbb{R}^2, x) .

Algebraic realization - non-compact & simply connected

Theorem (Bodin, Popescu-Pampu, Sorea, 2022)

Let G be a connected, non-compact, generic, transversal tree. Let G' be the compact tree obtained from G. If G' can be realized by a connected real algebraic curve, then G can be realized as the Poincaré–Reeb graph of a simply connected, non-compact algebraic domain in (\mathbb{R}^2, x) .

Strategy of proof - Case A

Strategy of proof - Case B

Strategy of proof - Case C

Case C is the complement of Case A:

Interior and exterior graphs of a domain of weakly finite type

Proposition

The interior graph G of a domain \mathcal{D} of weakly finite type determines its exterior graph G^c .

Thank you!

Bibliography:

Arnaud Bodin, Patrick Popescu-Pampu, and Miruna-Ştefana Sorea. "Poincaré-Reeb graphs of real algebraic domains". In: <i>Revista Matemática</i> <i>Complutense</i> (2023). url: https: //link.springer.com/article/10.1007/s13163- 023-00469-y (cit. on p. 68).
Étienne Ghys. A singular mathematical promenade. ENS Éditions, Lyon, 2017, pp. viii+302. url: http://ghys.perso.math.cnrs.fr/bricabrac/ promenade.pdf (cit. on pp. 49, 50).
Miruna-Ştefana Sorea. "The shapes of level curves of real polynomials near strict local minima". PhD thesis. Université de Lille, 2018. url: https: //hal.archives-ouvertes.fr/tel-01909028v1 (cit. on pp. 20, 21, 29, 31, 32, 46).
Miruna-Ştefana Sorea. "Constructing Separable Arnold Snakes of Morse Polynomials". In: <i>Portugaliae</i> <i>Mathematica</i> (2020). doi: 10.4171/PM/2050 (cit. on p. 45).
Miruna-Ştefana Sorea. "Measuring the local non-convexity of real algebraic curves". In: <i>Journal of</i> <i>Symbolic Computation</i> (2022). doi: 10.1016/j.jsc.2020.07.017 (cit. on pp. 17, 18).
Miruna-Ştefana Sorea. "Permutations encoding the local shape of level curves of real polynomials via generic projections". In: Annales de l'Institut Fourier (2022). doi: 10.5802/aif.3479 (cit. on p. 24).

Miruna-Ștefana Sorea (SISSA)