The Iwasawa invariants of \mathbb{Z}_{p}^{d}-covers of links.

Sohei Tateno joint work with Jun Ueki 2023/05/30

Contents

1. Historical backgrounds

2. Our main results
3. Definition of Iwasawa invariants

Fix a prime number p.

Notation

For an abelian group G whose p-torsion subgroup is a finite group, let $e(G)$ denote the p-exponent of the order of the p-torsion subgroup.

Example

- $e\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)=2$
$\cdot e\left(\mathbb{Z} \oplus \mathbb{Z} / p^{3} \mathbb{Z}\right)=3$

Historical backgrounds

For each number field k, an abelian group called an ideal class group $C l(k)$ is defined.
The finite number $h(k):=\# C l(k)$ is an important algebraic invariant called the class number of k.

Theorem [Kummer, 1847]
Let ζ_{p} denote a p-th root of unity. If $p \neq 2$ and $p \nmid h\left(\mathbb{Q}\left(\zeta_{p}\right)\right)$,
then The Fermat Last Conjecture holds for $n=p$.

Theorem(lwasawa's class number formula) [lwasawa, 1959]

Let k_{∞} / k be a \mathbb{Z}_{p}-extension and $k_{p^{n}}$ be the subfields corresponding to the subgroups $p^{n} \mathbb{Z}_{p}$ of \mathbb{Z}_{p}. Then there exist $\mu, \lambda \in \mathbb{Z}_{\geq 0}$ and $\nu \in \mathbb{Z}$, depending only on k_{∞} / k, such that
$e\left(C l\left(k_{p^{n}}\right)\right)=\mu p^{n}+\lambda n+\nu$
for sufficiently large n.

Example

$k:=\mathbb{Q}\left(\zeta_{p}\right) \subset \mathbb{Q}\left(\zeta_{p^{2}}\right) \subset \mathbb{Q}\left(\zeta_{p^{3}}\right) \subset \ldots \subset \bigcup_{n \geq 1} \mathbb{Q}\left(\zeta_{p^{n}}\right)=: k_{\infty}$.

A closed connected orientable 3-manifold M is called a rational homology 3-sphere $\left(\mathbb{Q} H S^{3}\right)$ if $H_{i}(M, \mathbb{Q}) \simeq H_{i}\left(S^{3}, \mathbb{Q}\right)$ for all $i \geq 0$.

Theorem [Hillman-Matei-Morishita, 2006]. [Kadokami-Mizusawa, 2008]. [Ueki, 2017]
Let L be a link in a $\mathbb{Q} H S^{3} M$. Let $M_{p^{n}} \rightarrow M$ be a compatible system of $\mathbb{Z} / p^{n} \mathbb{Z}$-covers branched along L. Suppose every $M_{p^{n}}$ is a $\mathbb{Q} H S^{3}$. Then there exist $\mu, \lambda \in \mathbb{Z}_{\geq 0}$ and $\nu \in \mathbb{Z}$, depending only on $M_{p^{n}} \rightarrow M$ and p, such that
$e\left(H_{1}\left(M_{p^{n}}\right)\right)=\mu p^{n}+\lambda n+\nu$ for sufficiently large n.

Theorem [Cuoco-Monsky, 1981]

Let k_{∞} / k be a \mathbb{Z}_{p}^{d}-extension and $k_{p^{n}}$ be the subfields corresponding to the subgroups
$\left(p^{n} \mathbb{Z}_{p}\right)^{d}$ of \mathbb{Z}_{p}^{d}. Then there exist some $\mu, \lambda \in \mathbb{Z}_{\geq 0}$, depending only on k_{∞} / k, such that

$$
e\left(C l\left(k_{p^{n}}\right)\right)=\left(\mu p^{n}+\lambda n+O(1)\right) p^{(d-1) n},
$$

where O is the Bachmann-Landau notation.

Our main results

Let (M, L) be a pair of a $\mathbb{Q} H S^{3}$ and a link.
Put $X:=M-N(L)$, where $N(L)$ is an open tubular neighbourhood of L.
Let $X_{\infty} \rightarrow X$ be a \mathbb{Z}^{d}-cover. Let X_{n} be the subcovers corresponding to $(n \mathbb{Z})^{d}$. Let M_{n} be the Fox completions of X_{n}.

Let $W:=\left\{\zeta \in \mathbb{C} \mid \zeta^{p^{n}}=1\right.$ for some $\left.n \geq 0\right\}$ and let $\Delta\left(t_{1}, \ldots, t_{d}\right) \in \mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots,,_{d}^{ \pm 1}\right]$ denote the Alexander polynomial of $X_{\infty} \rightarrow X$, which is corresponding to characteristic polynomials in Iwasawa theory.

Main result 1

Suppose that $\Delta\left(t_{1}, \ldots, t_{d}\right)$ does not vanish on $(W \backslash\{1\})^{d}$. Suppose each $M_{p^{n}}$ is a $\mathbb{Q} H S^{3}$. Then there exist $\mu, \lambda \in \mathbb{Z}_{\geq 0}$, depending only on $X_{\infty} \rightarrow X$ and p, such that $e\left(H_{1}\left(M_{p^{n}}\right)\right)=\left(\mu p^{n}+\lambda n+O(1)\right) p^{(d-1) n}$.
M is called an integral homology 3 -sphere $\left(\mathbb{Z} H S^{3}\right)$ if $H_{i}(M, \mathbb{Z}) \simeq H_{i}\left(S^{3}, \mathbb{Z}\right)$ for all $i \geq 0$.

Main result 2

Suppose that M is a $\mathbb{Z} H S^{3}, L$ consists of d components, and $\Delta_{L}\left(t_{1}, \ldots, t_{d}\right)$ does not vanish on $(W \backslash\{1\})^{d}$. Then there exist $\mu, \lambda \in \mathbb{Z}_{\geq 0}$ and $\mu_{d-1}, \ldots, \mu_{1}, \lambda_{d-1}, \ldots, \lambda_{1}, \nu \in \mathbb{Q}$, depending only on L and p, such that

$$
e\left(H_{1}\left(M_{p^{n}}\right)\right)=\mu p^{d n}+\lambda n p^{(d-1) n}+\mu_{d-1} p^{(d-1) n}+\lambda_{d-1} n p^{(d-2) n}+\ldots+\mu_{1} p^{n}+\lambda_{1} n+\nu .
$$

for sufficiently large n.

Remark

We have
M is $\mathbb{Q} H S^{3} \Longleftrightarrow H_{1}(M)$ is finite
M is $\mathbb{Z} H S^{3} \Longleftrightarrow H_{1}(M)=0$
Hence
$S^{3} \in\left\{\mathbb{Z} H S^{3}\right\} \subset\left\{\mathbb{Q} H S^{3}\right\}$.
$(\mathbb{Q} \in\{$ num. fields with $h(k)=0\} \subset\{$ num. fields $\})$

Example

Let $d=2$ and $M:=S^{3}$. For the twisted
Whitehead link $L:=W_{2 p^{k}}$, using a result of Porti, we obtain
$\left|H_{1}\left(M_{p^{n}}\right)\right|=p^{\left(k p^{n}+2 n-2 k\right) p^{n}-2 n+2 k}$.

Definition of Iwasawa invariants

Let $\Lambda_{\mathbb{Z}}:=\mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{d}^{ \pm 1}\right]$ and $\Lambda:=\mathbb{Z}_{p}\left[\left[T_{1}, \ldots, T_{d}\right]\right]$. We have an embedding
$\Lambda_{\mathbb{Z}} \hookrightarrow \lim _{\leftarrow}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)\left[t_{1}^{\mathbb{Z} / p^{n} \mathbb{Z}}, \ldots, t_{d}^{\mathbb{Z} / p^{n} \mathbb{Z}}\right] \simeq \Lambda$ sending $\Lambda_{\mathbb{Z}} \ni t_{i} \rightarrow 1+T_{i} \in \Lambda$. n

Let $\Delta\left(1+T_{1}, \ldots, 1+T_{d}\right) \in \Lambda$ be the Alexander polynomial. Then there exist unique $F_{0} \in \Lambda$ and $\mu \in \mathbb{Z}_{\geq 0}$ such that $\Delta=p^{\mu} F_{0}$ and $p \nmid F_{0}$.

Let $\bar{F}_{0}:=F_{0} \bmod p$ in $(\mathbb{Z} / p \mathbb{Z})\left[\left[T_{1}, \ldots, T_{d}\right]\right]$.

Let λ be the number of polynomials of the form $\left(\overline{1+T_{1}}\right)^{r_{1} \ldots\left(\overline{1+T_{d}}\right)^{r_{d}}-1}$ with $p+r_{i}(\exists i)$ that divides \bar{F}_{0}.

Example

If $L=7_{3}^{2}$, then
$\Delta_{L}(1+X, 1+Y)=2 X Y=2((1+X)-1)((1+Y)-1)$.
Hence $\lambda=2$. Moreover, $\mu=1$ if $p=2$.

If $L=6_{1}^{2}$, then

$\Delta_{L}(1+X, 1+Y)=X^{2} Y^{2}+2 X^{2} Y+2 X Y^{2}+X^{2}+5 X Y+Y^{2}+3 X+3 Y+3$
$\equiv((1+X)(1+Y)-1)^{2} \bmod 3$. Hence $\lambda=2$ if $p=3$.

We made a complete table of μ and λ invariants.

link	Alexander polynomial of $\Delta_{L}(1+X, 1+Y, \ldots)$	μ	λ
4_{1}^{2}	$X Y+X+Y+2$	0	$p=2$
${ }^{2}$	XY	0	2
6^{2}	$X^{2} Y^{2}+2 X^{2} Y+2 X Y^{2}+X^{2}+5 X Y+Y^{2}+3 X+3 Y+3$	0	$p=3$
6_{2}^{2}	$X^{2} Y+X Y^{2}+X^{2}+3 X Y+Y^{2}+3 X+3 Y+3$	0	
6_{3}^{2}	$2 X Y+X+Y+2$	0	0
	$X^{2} Y^{2}+X^{2} Y+X Y^{2}+X Y-X-Y-1$	0	0
	$X^{2} Y^{2}+X^{2} Y+X Y^{2}+3 X Y+X+Y+1$	0	0
7_{3}^{7}	$2{ }^{\text {SY }}$	1 if $p=2$	2
7_{4}^{2}	$X^{3} Y+2 X^{2} Y+2 X Y$	0	$\begin{gathered} 4 \text { if } p=2 \\ 2 \text { if not } \\ \hline \end{gathered}$
7_{7}^{2}	$X^{3} Y+X^{3}+X^{2} Y+3 X^{2}+X Y+3 X+Y+2$	0	1 if $p=2$
7_{6}	$X^{3} Y+X^{2} Y+X Y$	0	
$7{ }^{2}$	$X^{3} Y+X^{3}+3 X^{2} Y+3 X^{2}+3 X Y+3 X+Y+2$	0	$p=2$
7_{8}^{2}		0	2
8_{1}^{2}	$\begin{aligned} & X^{3} Y^{3}+3 X^{3} Y^{2}+3 X^{2} Y^{3}+3 X^{3} Y+9 X^{2} Y^{2}+3 X Y^{3}+2 X^{3}+10 X^{2} Y+10 X Y^{2} \\ & +Y^{3}+7 X^{2}+13 X Y+4 Y^{2}+9 X+6 Y+4 \end{aligned}$	0	0
8_{2}^{2}	$\begin{aligned} & X^{3} Y+X^{2} Y^{2}+X Y^{3}+X^{3}+4 X^{2} Y+4 X Y^{2}+Y^{3}+4 X^{2}+7 X Y \\ & +4 Y^{2}+6 X+6 Y+4 \end{aligned}$	0	0
8_{3}^{2}	$2 X^{2} Y^{2}+3 X^{2} Y+3 X Y^{2}+X^{2}+7 X Y+Y^{2}+3 X+3 Y+3$	0	0
8_{4}^{2}	$\begin{aligned} & X^{3} Y^{2}+X^{2} Y^{3}+2 X^{3} Y+4 X^{2} Y^{2}+2 X Y^{3}+X^{3}+7 X^{2} Y+7 X Y^{2}+Y^{3} \\ & +4 X^{2}+10 X Y+4 Y^{2}+6 X+6 Y+4 \end{aligned}$	0	3 if $p=2$
$8{ }_{5}^{2}$	$X^{2} Y^{2}-X^{2}-X Y-Y^{2}-3 X-3 Y-3$	0	0
8_{6}^{2}	$3 X Y+X+Y+2$	0	1 if $p=2$
$8{ }_{7}$	$X^{2} Y^{2}-X Y-X-Y-1$	0	0
8_{8}^{2}	$X^{2} Y^{2}+X Y+X+Y+1$	0	0
$8{ }_{9}^{2}$	$-X^{3}-2 X^{2} Y-X^{2}+3 X+Y+2$	0	1 if $p=2$
8_{10}^{2}	$X^{3} Y^{3}$	0	
	$-X^{3} Y+X^{3}-X^{2} Y+3 X^{2}-X Y+3 X+Y+2$	0	$p=2$
8_{12}^{2}	$X^{3} Y$	0	4
${ }^{8}{ }_{13}^{2}$	$X^{3} Y-X^{2} Y-X Y$	0	2
8_{14}	$X^{3} Y+X^{3}-X^{2} Y+3 X^{2}-X Y+3 X+Y+2$	0	$p=2$
	XY	0	
$8{ }_{16}$	$-X^{3}-X^{2}+2 X Y+3 X+Y+2$	0	1 if $p=2$
9_{1}^{2}	$\begin{aligned} & X^{3} Y^{3}+2 X^{3} Y^{2}+2 X^{2} Y^{3}+X^{3} Y+4 X^{2} Y^{2}+X Y^{3}+X^{2} Y+X Y^{2}-X^{2} \\ & -2 X Y-Y^{2}-3 X-3 Y-2 \end{aligned}$	0	0
9_{2}^{2}	$X^{3} Y+X^{2} Y^{2}+X Y^{3}+2 X^{2} Y+2 X Y^{2}-X^{2}-X Y-Y^{2}-3 X-3 Y$	0	0
9_{3}^{2}	$2 X^{2} Y^{2}+2 X^{2} Y+2 X Y^{2}+3 X Y-X-Y-1$	0	0
9_{4}^{2}	$X^{3} Y^{2}+X^{2} Y^{3}+X^{3} Y+5 X^{2} Y^{2}+X Y^{3}+5 X^{2} Y+5 X Y^{2}+5 X Y$	0	2
$9{ }_{5}^{2}$	$X^{3} Y+2 X^{2} Y^{2}+X Y^{3}+4 X^{2} Y+4 X Y^{2}+4 X Y$	0	$\begin{aligned} & \hline \text { 4if } p=2 \end{aligned}$
9_{6}^{2}	$-X^{3} Y^{2}-X^{2} Y^{3}-X^{3} Y-3 X^{2} Y^{2}-X Y^{3}-2 X^{2} Y-2 X Y^{2}+X^{2}+X Y$	0	1 if $p=2$
9_{7}^{2}	$-X^{3} Y^{2}-X^{2} Y^{3}-X^{3} Y-2 X^{2} Y^{2}-X Y^{3}-X^{2} Y-X Y^{2}+X^{2}+2 X Y$	0	1 if $p=2$
9_{8}^{2}	$2 X^{2} Y+2 X Y^{2}+3 X Y-X-Y-1$	0	0
9_{9}^{2}	$\begin{aligned} & X^{3} Y^{2}-X^{2} Y^{3}+X^{3} Y-3 X^{2} Y^{2}-X Y^{3}-3 X^{2} Y-3 X Y^{2}-2 X^{2}-3 X Y \\ & -2 X \end{aligned}$	0	1
$9^{2}{ }^{2}$	$3 X Y$	1 if $p=3$	2
	$2 X^{2} Y^{2}+X^{2} Y+X Y^{2}+X Y-X-Y-1$		0
9_{12}^{2}	$X^{2} Y^{2}-X^{2} Y-X Y^{2}-X Y+X+Y+1$	0	0
9_{13}^{2}	$X^{5} Y+4 X^{4} Y+7 X^{3} Y+6 X^{2} Y+3 X Y$	0	$\begin{gathered} 4 \text { if } p=3 \\ 2 \text { if not } \end{gathered}$

9_{14}^{2}	$\begin{aligned} & X^{5}+2 X^{4} Y+5 X^{4}+6 X^{3} Y+10 X^{3}+8 X^{2} Y+10 X^{2}+4 X Y+5 X \\ & +Y+2 \end{aligned}$	0	1 if $p=2$
9_{15}^{2}	$2 X^{3} Y+3 X^{2} Y+3 X Y$	0	$\begin{aligned} & 4 \text { if } p=3 \\ & \text { of } 1 \end{aligned}$
9_{16}^{2}	$2 X^{3}+4 X^{2} Y+5 X^{2}+3 X Y+3 X+Y+2$	0	1 if $p=2$
9_{17}^{2}	$2 X^{3}+3 X^{2} Y+5 X^{2}+2 X Y+3 X+Y+2$	0	1 if $p=2$
9_{18}^{2}	$2 X^{3} Y+2 X^{2} Y+2 X Y$	1 if $p=2$	
9_{19}^{2}	$\begin{aligned} & X^{4} Y+X^{3} Y^{2}+5 X^{3} Y+2 X^{2} Y^{2}+X^{3}+8 X^{2} Y+2 X Y^{2}+2 X^{2}+6 X Y \\ & +2 X+Y+1 \end{aligned}$	0	0
9_{20}^{2}	$X^{4}+2 X^{3} Y+2 X^{2} Y^{2}+4 X^{3}+7 X^{2} Y+2 X Y^{2}+7 X^{2}+6 X Y+Y^{2}$	0	0
9_{21}^{2}	$\begin{aligned} & X^{4} Y^{2}+X^{4} Y+3 X^{3} Y^{2}+5 X^{3} Y+4 X^{2} Y^{2}+X^{3}+8 X^{2} Y+2 X Y^{2}+2 X^{2} \\ & +6 X Y+2 X+Y+1 \end{aligned}$	0	0
9_{22}^{2}	$\begin{aligned} & X^{4} Y+2 X^{3} Y^{2}+X^{4}+5 X^{3} Y+4 X^{2} Y^{2}+4 X^{3}+10 X^{2} Y+3 X Y^{2}+7 X^{2} \\ & +8 X Y+Y^{2}+6 X+3 Y+3 \end{aligned}$	0	0
9_{23}^{2}	$X^{3} Y+2 X^{2} Y^{2}+X Y^{3}+3 X^{2} Y+3 X Y^{2}-X^{2}-Y^{2}-3 X-3 Y-2$	0	1 if $p=2$
9_{24}^{2}	$3 X^{2} Y^{2}+3 X^{2} Y+3 X Y^{2}+X^{2}+7 X Y+Y^{2}+3 X+3 Y+3$	0	2 if $p=3$
9_{25}^{2}	$X^{3} Y-2 X^{2} Y-2 X Y$	0	$4 \text { if } p=2$
9_{26}^{2}	$X^{3} Y-X^{3}-X^{2} Y-X^{2}+X Y+3 X+Y+2$	0	1 if $p=2$
9_{27}^{2}	$2 X^{3} Y+3 X^{2} Y+3 X Y$	0	$\begin{gathered} 4 \text { if } p=3 \\ 2 \text { if not } \end{gathered}$
9_{28}^{2}	$X^{3} Y-X^{3}-X^{2} Y-3 X^{2}-X Y-3 X-Y-2$	0	1 if $p=2$
9_{29}^{2}	$-2 X^{4} Y-5 X^{3} Y-6 X^{2} Y-3 X Y+1$	0	0
9_{30}^{2}	$-X^{3} Y+2 X^{3}+X^{2} Y+5 X^{2}+3 X+Y+2$	0	0
9_{31}^{2}	$X^{5} Y+3 X^{4} Y+4 X^{3} Y+2 X^{2} Y+X Y$	0	2
9_{32}^{2}	$2 X^{3} Y+X^{2} Y+X Y$	0	2
9_{33}^{2}	$2 X^{3} Y+X^{2} Y+X Y$	0	2
9_{34}^{2}	$\begin{aligned} & X^{4} Y^{2}+X^{4} Y+2 X^{3} Y^{2}+3 X^{3} Y+2 X^{2} Y^{2}+2 X^{2} Y+X Y^{2}-X^{2}-2 X \\ & -Y-1 \end{aligned}$	0	0
9_{35}^{2}	$\begin{aligned} & X^{4} Y^{2}+X^{4} Y+2 X^{3} Y^{2}+3 X^{3} Y+2 X^{2} Y^{2}+4 X^{2} Y+X Y^{2}+X^{2}+4 X Y \\ & +2 X+Y+1 \end{aligned}$	0	0
9_{36}^{2}	$2 X^{3} Y+2 X^{2} Y+2 X Y$	1 if $p=2$	2
9_{37}^{2}	$X^{5} Y+3 X^{4} Y+5 X^{3} Y+4 X^{2} Y+2 X Y$	0	$\begin{gathered} 4 \text { if } p=2 \\ 2 \text { if not } \end{gathered}$
9_{38}^{2}	$2 X^{3} Y+X^{2} Y+X^{2}+2 X Y+3 X+Y+2$	0	1 if $p=2$
9_{39}^{2}	$\begin{aligned} & -X^{4} Y-2 X^{3} Y^{2}-X^{4}-4 X^{3} Y-4 X^{2} Y^{2}-3 X^{3}-7 X^{2} Y-3 X Y^{2}-4 X^{2} \\ & -4 X Y-Y^{2}-2 X-Y \end{aligned}$	0	0
9_{40}^{2}	$X^{4} Y^{2}+2 X^{4} Y+X^{3} Y^{2}+X^{4}+5 X^{3} Y+4 X^{3}+4 X^{2} Y+X Y^{2}+7 X^{2}$	0	2 if $p=3$
9_{41}^{2}	$X^{3} Y^{3}+2 X^{3} Y^{2}+X^{2} Y^{3}+X^{3} Y+5 X^{2} Y^{2}+3 X^{2} Y+3 X Y^{2}+3 X Y$	0	$\begin{gathered} 4 \text { if } p=3 \\ 2 \text { if not } \end{gathered}$
9_{42}^{2}	$X^{4} Y^{2}+X^{4} Y+X^{3} Y^{2}+2 X^{3} Y-X^{2} Y-X^{2}-2 X Y-2 X-Y$	0	0
9_{43}^{2}	$X^{5}+5 X^{4}+10 X^{3}+10 X^{2}+5 X+Y+2$	0	1 if $p=2$
9_{44}^{2}	$X^{3} Y+2 X^{2} Y+2 X Y$	0	$\begin{gathered} 4 \text { if } p=2 \\ 2 \text { if not } \end{gathered}$
9_{45}^{2}	$2 X^{3}+5 X^{2}-X Y+3 X+Y+2$	0	1 if $p=2$
9_{96}^{2}	$2 X Y$	$p=2$	2
9_{47}^{2}	XY		2
9_{48}^{2}	$2 X^{3}+X^{2} Y+5 X^{2}+3 X+Y+2$	0	1 if $p=2$
9_{49}^{29}	$X^{4}+4 X^{3}+X^{2} Y+7 X^{2}+2 X Y+Y^{2}+6 X+3 Y+3$	0	2 if $p=3$
950	$-X^{2} Y-X Y+Y^{2}+X+Y+1$	0	0
9_{51}^{2}	$\begin{aligned} & X^{4} Y+X^{4}+3 X^{3} Y+4 X^{3}+4 X^{2} Y+X Y^{2}+7 X^{2}+4 X Y+Y^{2} \\ & +6 X+3 Y+3 \end{aligned}$	0	0
9_{52}^{2}	$X^{2} Y^{2}+X^{2} Y+X Y-Y^{2}-X-Y-1$	0	0
9_{53}^{2}	$\begin{aligned} & X^{2} Y^{2}+X^{3}+2 X^{2} Y+2 X Y^{2}+Y^{3}+4 X^{2}+5 X Y+4 Y^{2}+6 X \\ & +6 Y+4 \end{aligned}$	0	2 if $p=2$
9_{54}^{2}	$X^{2} Y+X Y^{2}+X Y-X-Y-1$	0	0
9_{55}^{2}	$X^{3} Y+X^{2} Y+X Y$	0	2
9_{56}^{2}	$X^{3} Y+X^{2} Y+X Y$	0	2
9_{57}^{2}	$X^{3} Y+2 X^{2} Y+X^{2}+3 X Y+3 X+Y+2$	0	0
9_{58}^{2}	$X^{3} Y+X^{2} Y+X^{2}+2 X Y+3 X+Y+2$	0	0
9_{59}^{2}	$X^{5} Y+X^{5}+5 X^{4} Y+5 X^{4}+9 X^{3} Y+10 X^{3}+8 X^{2} Y+10 X^{2}+4 X Y$	0	0

9_{60}^{2}	$X^{3} Y+2 X^{3}+2 X^{2} Y+5 X^{2}+X Y+3 X+Y+2$	0	0
9_{61}^{2}	$\begin{aligned} & X^{3} Y^{2}+2 X^{3} Y+3 X^{2} Y^{2}+X Y^{3}+X^{3}+6 X^{2} Y+6 X Y^{2}+Y^{3}+4 X^{2} \\ & +9 X Y+4 Y^{2}+6 X+6 Y+4 \end{aligned}$	0	2 if $p=2$
6^{3}	$X Y+X Z+Y Z+X+Y+Z$	0	0
6_{2}^{3}	$-X Y Z$	0	3
6_{3}^{3}	$-X Y Z-X Y-X Z-Y Z-X-Y-Z$	0	1
7_{1}^{3}	$-X Y Z+Y Z-X+Y+Z$	0	0
8_{1}^{3}	$\begin{aligned} & -X^{2} Y^{2} Z-2 X^{2} Y Z-X Y^{2} Z-X^{2} Y+X Y^{2}-X^{2} Z-3 X Y Z-X^{2}+Y^{2} \\ & -2 X Z-2 X+2 Y-Z \end{aligned}$	0	0
8_{2}^{3}	$X^{2} Y^{2}+X^{2} Y Z+X Y^{2} Z+2 X^{2} Y+2 X Y^{2}+X^{2} Z+2 X Y Z+Y^{2} Z+X^{2}$	0	0
8_{3}^{3}	$X Y Z-X Y-X Z-Y Z-X-Y-Z$	0	1 if $p=2$
8_{4}^{3}	$\begin{aligned} & X^{3} Y+2 X^{2} Y Z+X^{3}+3 X^{2} Y+X^{2} Z+2 X Y Z+4 X^{2}+2 X Y+2 X Z \\ & +4 X \end{aligned}$	0	$\begin{gathered} 3 \text { if } p=2 \\ 1 \text { if not } \end{gathered}$
$8{ }_{5}^{3}$	$X^{2} Y^{2} Z+X^{2} Y Z+X Y^{2} Z+2 X Y Z$	0	$\begin{aligned} & 4 \text { if } p=2 \\ & 3 \text { if not } \end{aligned}$
$8{ }_{6}^{3}$	$X^{2} Y^{2} Z+X^{2} Y Z+X Y^{2} Z+3 X Y Z+X Z+Y Z+Z$	0	1
8_{7}^{3}	$\begin{aligned} & -X^{2} Y^{2} Z-X^{2} Y^{2}-2 X^{2} Y Z-2 X Y^{2} Z-2 X^{2} Y-2 X Y^{2}-X^{2} Z-4 X Y Z-Y^{2} Z \\ & -X^{2}-4 X Y-Y^{2}-2 X Z-2 Y Z-2 X-2 Y-Z \end{aligned}$	0	1
8_{8}^{3}	$\begin{aligned} & X Y^{2} Z-X^{2} Y+X Y^{2}+X Y Z+Y^{2} Z-X^{2}+Y^{2}+2 Y Z-2 X \\ & +2 Y+Z \end{aligned}$	0	0
$8{ }_{9}^{3}$	XYZ	0	3
8_{10}^{3}	$\begin{aligned} & X^{3} Y Z+X^{3} Y+X^{3} Z+3 X^{2} Y Z+X^{3}+3 X^{2} Y+3 X^{2} Z+2 X Y Z+4 X^{2} \\ & +2 X Y+2 X Z+4 X \end{aligned}$	0	$\begin{gathered} 3 \text { if } p=2 \\ 1 \text { if not } \end{gathered}$
9_{1}^{3}	$X^{2} Y^{2} Z+X^{2} Y Z+X^{2} Y-X Y^{2}-X Z-Y Z-Z$	0	
9_{2}^{3}	$X^{2} Y^{2} Z+X^{2} Y Z+X^{2} Y-X Y^{2}+2 X Y Z+X Z+Y Z+Z$	0	0
9_{3}^{3}	$\begin{aligned} & -X^{3} Y Z-X^{2} Y Z-X^{3}+X^{2} Y+X^{2} Z-X Y Z-X^{2}+X Y+X Z \\ & +Y Z-X+Y+Z \end{aligned}$	0	0
9_{4}^{3}	$\begin{aligned} & X^{3} Y+X^{3} Z+2 X^{2} Y Z+X^{3}+2 X^{2} Y+2 X^{2} Z+2 X Y Z+X^{2}+2 X Y \\ & +2 X Z+Y Z+X+Y+Z \end{aligned}$	0	0
$9{ }_{5}^{3}$	$\begin{aligned} & X^{2} Y Z+X Y^{2} Z+2 X Y Z-Y^{2} Z+X^{2}-Y^{2}-2 Y Z+2 X-2 Y \\ & -Z \end{aligned}$	0	0
9_{6}^{3}	$\begin{aligned} & X^{2} Y^{2} Z+X^{2} Y Z+X^{2} Y-X Y^{2}+X Y Z-Y^{2} Z+X^{2}-Y^{2}-2 Y Z \\ & +2 X-2 Y-Z \end{aligned}$	0	0
9_{7}^{3}	$2 X Y Z-Y Z+X-Y-Z$	0	1 if $p=2$
9_{8}^{3}	$X^{3} Y+2 X^{2} Y Z+2 X^{2} Y+X Y Z$	0 0	$\begin{gathered} 3 \text { if } p=2,3 \\ 2 \text { if not } \end{gathered}$
9_{9}^{3}	$X^{3} Y Z+X^{2} Y Z+X Y Z$	0	
9_{10}^{3}	$X^{2} Y^{2} Z$	0	5
9_{11}^{3}	$\begin{aligned} & X^{2} Y^{2} Z-8 X Y Z-Y^{2} Z+X^{2}-Y^{2}-8 X Z-10 Y Z+2 X-2 Y \\ & -9 Z \end{aligned}$	0	0
9_{12}^{3}	$X^{3} Y^{3}$	0	5
${ }_{913}^{32}$	$X^{2} Y^{2} Z+X^{2} Y^{2}+X^{2} Y Z+X Y^{2} Z+X^{2} Y+X Y^{2}-X Z-Y Z-Z$	0	0
9_{14}^{3}	$X^{2} Y^{2} Z+X^{2} Y^{2}+X^{2} Y Z+X Y^{2} Z+X^{2} Y+X Y^{2}+2 X Y Z+X Z+Y Z$	0	0
9_{15}^{3}	$\begin{aligned} & X^{3} Y+X^{3} Z+X^{3}+2 X^{2} Y+2 X^{2} Z+X^{2}+2 X Y+2 X Z+Y Z \\ & +X+Y+Z \end{aligned}$	0	0
9_{16}^{3}	$-2 X^{2} Y Z+X^{3}-X^{2} Y-X^{2} Z-2 X Y Z+X^{2}-X Y-X Z-Y Z$	0	0
9_{17}^{3}	$\begin{aligned} & -X^{3}+X^{2} Y+X^{2} Z-X^{2}+X Y+X Z+Y Z-X+Y \\ & +Z \end{aligned}$	0	0
${ }_{9}{ }_{18}$	$-X Y Z$	0	3
${ }_{919}^{39}$	$-X^{3} Y Z-X^{3} Y-2 X^{2} Y Z-2 X^{2} Y-X Y Z$	0	3
9_{20}^{3}	$-X^{3} Z-X^{2} Y Z-2 X^{2} Z$	0	$\begin{gathered} 4 \text { if } p=2 \\ 3 \text { if not } \end{gathered}$
8_{1}^{4}	$-W X Y-W X Z-W Y Z-X Y Z-W Y-X Y-W Z-X Z$	0	0
88	$-W X Z-W Y Z-W Y+X Y-W Z-X Z$	0	0
${ }_{4}^{4}$	$W X Y Z+W X Y+W X Z+W Y Z+X Y Z+W Y+X Y+W Z+X Z$	0	2
$8{ }_{4}^{4}$	$W X Y Z-W X Z-W Y Z-W Y+X Y-W Z-X Z$	0	0

Let $W_{2 m}$ denote twisted Whitehead links in S^{3}. By a calculation using the potential functions of links, we obtain $\Delta_{W_{2 m}}(x, y)=m(x-1)(y-1)$.
i.e.,
$\Delta_{W_{2 m}}(1+X, 1+Y)=m X Y$.

This yields $\mu_{W_{2, k}}=k$. In particular, we have

Main result 3

Suppose $d=2$. Then, for arbitrary $k \geq 0$, there exists a link L such that $\mu_{L}=k$.

Reference

Albert A. Cuoco and Paul Monsky, Class numbers in \mathbb{Z}_{p}^{d}-extensions, Math. Ann. 255 (1981), no. 2, 235-258.

Jonathan Hillman, Daniel Matei, and Masanori Morishita, Pro-p link groups and p-homology groups, Primes and knots, 121-136, Contemp. Math., 416, Amer. Math. Soc., Providence, RI, 2006.

Kenkichi Iwasawa, On Γ-extensions of algebraic number fields, Bull. Amer. Math. Soc., 65 (1959), 183-226.

Teruhisa Kadokami and Yasushi Mizusawa, Iwasawa type formula for covers of a link in a rational homology sphere, J. Knot Theory Ramifications, 17 (2008), no. 10, $1199-1221$.

Paul Monsky, On p-adic power series, Math. Ann., 255 (1981), no. 2, 217-227.
Masanori Morishita, Knots and primes, An introduction to arithmetic topology. Universitext. Springer, London, 2012. Joan Porti, Mayberry-Murasugi's formula for links in homology 3-spheres, Proc. Amer. Math. Soc., 132 (2004), no. 1 1, 3423-3431. Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7. Publish or Perish, Inc., Berkeley, Calif., 1976.

Sohei Tateno, The Iwasawa invariants of \mathbb{Z}_{p}^{d}-covers of links, Ph.D. thesis, Graduate School of Mathematics, Nagoya University, 2023. Sohei Tateno and Jun Ueki, The Iwasawa invariants of \mathbb{Z}_{p}^{d}-covers of links, in preparation.

Jun Ueki, On the Iwasawa invariants for links and Kida's formula, Internat. J. Math. 28 (2017), no. 6, 1750035, 30 pp.

