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We denote by H' the linear Haurdorff measure (roughly speaking, length).

Problem (Euclidean Steiner problem)

Let C' be a compact subset of R%. To find a closed S such that SU C' is
connected and H'(S) is minimal.

If C is totally disconnected then S should be connected.
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Torrichelli point is unique.

B

No uniqueness :(

Problem (Euclidean Steiner problem)

Let C' be a compact subset of R%. To find closed S such that S U C is
connected and H'(S) is minimal.

e S exists;
e S contains no loops;
e only two variants of neighbourhoods for points from S\ C.
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Steiner problem. Some properties

Problem (Euclidean Steiner problem)

Let C' be a compact subset of R®. To find closed S such that SU C' is
connected and H'(S) is minimal.

Some properties (in a full generality proved by Stepanov and Paolini, 2013)
o S exists;

e S contains no loops;

e Only two variants of a neighbourhood of a point x € S\ C:
e a regular tripod (z is a branching point);
e a segment; x is an inner point.

e S contains at most countable number of branching points

Usually (if C € S) SUC is called Steiner tree, and it is called
indecomposable (full, irreducible), when S\ C'is connected. Three directions



Steiner tree with infinite number of branching points

Theorem (Paolini—Stepanov—T, 2015; Cherkashin—T. 2023; Paolini-Stepanov
2023)

There is a compact planar set M for which the unique solution of the Steiner
problem has infinite number of triple points.

M, ¥ are self-similar fractals with sufficiently small scale.

Yo

Figure: Indecomposable Steiner tree with infinite number of triple points



Adding property (for full trees)

We say that full Steiner tree S connecting finite set C' = {A; ... A,} has
adding property if there exists such &€ > 0 that |J]_,[A:B:] U S is Steiner tree
for {B1...B,} where |A;B;| = ¢ and B; belongs to the ray beginning from
the segment of S incident A;.

Theorem

Cherkashin, T., 2022; reformulated Let St be a Steiner tree for terminals

A= (A1,...,An), A; € R" such that every Steiner tree for an n-tuple in the
closed 2r-neighbourhood of A has the same topology as St for some positive r.
Then St has adding property.

Example: the tripod
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Usually the condition holds:

Theorem (Basok, Cherkashin, T., 2022)

For m > 4 the set of m terminals with non unique Steiner trees has the
Hausdorff dimension 2m — 1.

What if the condition does not hold?



Square magic

Theorem (Cherkashin, T., 2022)

Let St be a Steiner tree for terminals A = (Ax, ..., An), A; € R™ such that
every Steiner tree for an n-tuple in the closed 2r-neighbourhood of A has the
same topology as St for some positive r. Then St has adding property.

It turns out that a Steiner tree for the vertices of a square does not have this
property:




Thank you for your attenti

Figure: The left part contains two Steiner trees connecting vertices of a square; the
right part provides an example of a Steiner tree with an infinite number of branching
points y;, i > 1.



Hausdorff measure

Let (X, p) be a metric space. For any subset U C X, let diam U denote its
diameter, that is diam U := sup{p(z,y) : =,y € U}, diam{ := 0.
Let S be any subset of X, and § > 0 a real number. Define

H{(S) = inf {Z(diam U)?*: | JUi 2 8, diam U; < 5}
i=1 i=1
where the infimum is over all countable covers of S by sets U; C X satisfying
diamU; < 6.
Let

H(S) := sup H{ = %im H{(S).
5>0 —0



