About some Steiner trees

Yana Teplitskaya

Université Paris-Saclay
Algebraic and geometric methods of analysis
May 29 - June 1, 2023

Statement of Steiner problem

Problem: to connect a (usually finite) set of points by the shortest connected set (usually at the plane):
A
B
-
-

We denote by \mathcal{H}^{1} the linear Haurdorff measure (roughly speaking, length)

Probtem (Euclidean Steiner probtem)

Let C be a compact subset of \mathbb{R}^{d}. To find a closed S such that $S \cup C$ is connected and $\mathcal{H}^{1}(S)$ is minimal.

If C is totally disconnected then S should be connected

Statement of Steiner problem

Problem: to connect a (usually finite) set of points by the shortest connected set (usually at the plane):
$A \quad B$

We denote by \mathcal{H}^{1} the linear Haurdorff measure (roughly speaking, length).

Problem (Euclidean Steiner problem)

Let C be a compact subset of \mathbb{R}^{d}. To find a closed S such that $S \cup C$ is connected and $\mathcal{H}^{1}(S)$ is minimal.

If C is totally disconnected then S should be connected.

Steiner problem for three and four points. General properties

No uniqueness

Problem (Euctidean Steiner problem)

Let C be a compact subset of \mathbb{R}^{d}. To find closed S such that $S \cup C$ is
connected and $\mathcal{H}^{1}(S)$ is minimal.

- S exists;
- S contains no loops;
- only two variants of neighbourhoods for points from $S \backslash C$

Steiner problem for three and four points. General properties

Torrichelli point is unique.

No uniqueness

Problem (Euctidean Steiner problem)

Let C be a compact subset of \mathbb{R}^{d}. To find closed S such that $S \cup C$ is
connected and $\mathcal{H}^{1}(S)$ is minimal.

- S exists;
- S contains no loops;
- only two variants of neighbourhoods for points from $S \backslash C$.

Steiner problem for three and four points. General properties

No uniqueness

Problem (Euctidean Steiner problem)

Let C be a compact subset of \mathbb{R}^{d}. To find closed S such that $S \cup C$ is
connected and $\mathcal{H}^{1}(S)$ is minimal.

- S exists;
- S contains no loops;
- only two variants of neighbourhoods for points from $S \backslash C$

Steiner problem for three and four points. General properties

No uniqueness :(
Problem (Euclidean Steiner problem)
Let C be a compact subset of \mathbb{R}^{d}. To find closed S such that $S \cup C$ is connected and $\mathcal{H}^{1}(S)$ is minimal.

- S exists;
- S contains no loops;
- only two variants of neighbourhoods for points from $S \backslash C$.

Problem (Euclidean Steiner problem)

Let C be a compact subset of \mathbb{R}^{d}. To find closed S such that $S \cup C$ is connected and $\mathcal{H}^{1}(S)$ is minimal.

Some properties (in a full generality proved by Stepanov and Paolini, 2013)

- S exists;
- S contains no loops;
- Only two variants of a neighbourhood of a point $x \in S \backslash C$:
- a regular tripod (x is a branching point);
- a segment; x is an inner point.
- S contains at most countable number of branching points

Usually (if $C \subset S$) $S \cup C$ is called Steiner tree, and it is called
indecomposable (full, irreducible), when $S \backslash C$ is connected. Three directions

Steiner problem. Some properties

Problem (Euclidean Steiner problem)

Let C be a compact subset of \mathbb{R}^{d}. To find closed S such that $S \cup C$ is connected and $\mathcal{H}^{1}(S)$ is minimal.

Some properties (in a full generality proved by Stepanov and Paolini, 2013)

- S exists;
- S contains no loops;
- Only two variants of a neighbourhood of a point $x \in S \backslash C$:
- a regular tripod (x is a branching point);
- a segment; x is an inner point.
- S contains at most countable number of branching points

Usually (if $C \subset S$) $S \cup C$ is called Steiner tree, and it is called indecomposable (full, irreducible), when $S \backslash C$ is connected. Three directions

Steiner problem. Some properties

Problem (Euclidean Steiner problem)

Let C be a compact subset of \mathbb{R}^{d}. To find closed S such that $S \cup C$ is connected and $\mathcal{H}^{1}(S)$ is minimal.

Some properties (in a full generality proved by Stepanov and Paolini, 2013)

- S exists;
- S contains no loops;
- Only two variants of a neighbourhood of a point $x \in S \backslash C$:
- a regular tripod (x is a branching point);
- a segment; x is an inner point.
- S contains at most countable number of branching points Usually (if $C \subset S$) $S \cup C$ is called Steiner tree, and it is called indecomposable (full, irreducible), when $S \backslash C$ is connected. Three directions

Steiner problem. Some properties

Problem (Euclidean Steiner problem)

Let C be a compact subset of \mathbb{R}^{d}. To find closed S such that $S \cup C$ is connected and $\mathcal{H}^{1}(S)$ is minimal.

Some properties (in a full generality proved by Stepanov and Paolini, 2013)

- S exists;
- S contains no loops;
- Only two variants of a neighbourhood of a point $x \in S \backslash C$:
- a regular tripod (x is a branching point);
- a segment; x is an inner point.
- S contains at most countable number of branching points

Usually (if $C \subset S$) $S \cup C$ is called Steiner tree, and it is called indecomposable (full, irreducible), when $S \backslash C$ is connected. Three directions

Theorem (Paolini-Stepanov-T, 2015; Cherkashin-T. 2023; Paolini-Stepanov 2023)
 There is a compact planar set M for which the unique solution of the Steiner problem has infinite number of triple points.

M, Σ are self-similar fractals with sufficiently small scale.

Figure: Indecomposable Steiner tree with infinite number of triple points

We say that full Steiner tree S connecting finite set $C=\left\{A_{1} \ldots A_{n}\right\}$ has adding property if there exists such $\varepsilon>0$ that $\bigcup_{i=1}^{n}\left[A_{i} B_{i}\right] \cup S$ is Steiner tree for $\left\{B_{1} \ldots B_{n}\right\}$ where $\left|A_{i} B_{i}\right|=\varepsilon$ and B_{i} belongs to the ray beginning from the segment of S incident A_{i}.

Theorem

Cherkashin, T., 2022; reformulated Let St be a Steiner tree for terminals $A=\left(A_{1}, \ldots, A_{m}\right), A_{i} \in \mathbb{R}^{n}$ such that every Steiner tree for an n-tuple in the closed $2 r$-neighbourhood of A has the same topology as $S t$ for some positive r. Then St has adding property.

Example: the tripod
Usually the condition holds:
Theorem (Basok, Cherkashin, T., 2022)
For $m \geq 4$ the set of m terminals with non unique Steiner trees has the
Hausdorff dimension $2 m-1$
What if the condition does not hold?

Adding property (for full trees)

We say that full Steiner tree S connecting finite set $C=\left\{A_{1} \ldots A_{n}\right\}$ has adding property if there exists such $\varepsilon>0$ that $\bigcup_{i=1}^{n}\left[A_{i} B_{i}\right] \cup S$ is Steiner tree for $\left\{B_{1} \ldots B_{n}\right\}$ where $\left|A_{i} B_{i}\right|=\varepsilon$ and B_{i} belongs to the ray beginning from the segment of S incident A_{i}.

Theorem

Cherkashin, T., 2022; reformulated Let St be a Steiner tree for terminals $A=\left(A_{1}, \ldots, A_{m}\right), A_{i} \in \mathbb{R}^{n}$ such that every Steiner tree for an n-tuple in the closed $2 r$-neighbourhood of A has the same topology as $S t$ for some positive r. Then St has adding property.

Example: the tripod Usually the condition holds:

Theorem (Basok, Cherkashin, T., 2022)

For $m \geq 4$ the set of m terminals with non unique Steiner trees has the Hausdorff dimension $2 m-1$.

What if the condition does not hold?

Theorem (Cherkashin, T., 2022)

Let St be a Steiner tree for terminals $A=\left(A_{1}, \ldots, A_{m}\right), A_{i} \in \mathbb{R}^{n}$ such that every Steiner tree for an n-tuple in the closed $2 r$-neighbourhood of A has the same topology as St for some positive r. Then $S t$ has adding property.

It turns out that a Steiner tree for the vertices of a square does not have this property:

Figure: The left part contains two Steiner trees connecting vertices of a square; the right part provides an example of a Steiner tree with an infinite number of branching points $y_{i}, i \geq 1$.

Let (X, ρ) be a metric space. For any subset $U \subset X$, let $\operatorname{diam} U$ denote its diameter, that is $\operatorname{diam} U:=\sup \{\rho(x, y): x, y \in U\}$, $\operatorname{diam} \emptyset:=0$. Let S be any subset of X, and $\delta>0$ a real number. Define

$$
H_{\delta}^{d}(S)=\inf \left\{\sum_{i=1}^{\infty}\left(\operatorname{diam} U_{i}\right)^{d}: \bigcup_{i=1}^{\infty} U_{i} \supseteq S, \operatorname{diam} U_{i}<\delta\right\}
$$

where the infimum is over all countable covers of S by sets $U_{i} \subset X$ satisfying $\operatorname{diam} U_{i}<\delta$.
Let

$$
H^{d}(S):=\sup _{\delta>0} H_{\delta}^{d}=\lim _{\delta \rightarrow 0} H_{\delta}^{d}(S) .
$$

