About some Steiner trees

Yana Teplitskaya

Université Paris-Saclay

Algebraic and geometric methods of analysis May 29 - June 1, 2023 <u>Problem</u>: to connect a (usually finite) set of points by the shortest connected set (usually at the plane):

We denote by \mathcal{H}^1 the linear Haurdorff measure (roughly speaking, length).

Problem (Euclidean Steiner problem)

Let C be a compact subset of \mathbb{R}^d . To find a closed S such that $S \cup C$ is connected and $\mathcal{H}^1(S)$ is minimal.

If C is totally disconnected then S should be connected.

<u>Problem</u>: to connect a (usually finite) set of points by the shortest connected set (usually at the plane):

We denote by \mathcal{H}^1 the linear Haurdorff measure (roughly speaking, length).

Problem (Euclidean Steiner problem)
Let ${m C}$ be a compact subset of ${\mathbb R}^d.$ To find a closed ${m S}$ such that $S\cup C$ is
connected and $\mathcal{H}^1(S)$ is minimal.

If C is totally disconnected then S should be connected.

No uniqueness :(

Problem (Euclidean Steiner problem)

- S exists;
- S contains no loops;
- only two variants of neighbourhoods for points from $S \setminus C$.

No uniqueness :(

Problem (Euclidean Steiner problem)

- S exists;
- S contains no loops;
- only two variants of neighbourhoods for points from $S \setminus C$.

No uniqueness :(

Problem (Euclidean Steiner problem)

- S exists;
- S contains no loops;
- only two variants of neighbourhoods for points from $S \setminus C$.

No uniqueness :(

Problem (Euclidean Steiner problem)

- S exists;
- S contains no loops;
- only two variants of neighbourhoods for points from $S \setminus C$.

Let C be a compact subset of \mathbb{R}^d . To find closed S such that $S \cup C$ is connected and $\mathcal{H}^1(S)$ is minimal.

Some properties (in a full generality proved by Stepanov and Paolini, 2013)

- S exists;
- S contains no loops;
- Only two variants of a neighbourhood of a point $x \in S \setminus C$:
 - a regular tripod (x is a branching point);
 - a segment; x is an inner point.

 $\bullet\ S$ contains at most countable number of branching points

Let C be a compact subset of \mathbb{R}^d . To find closed S such that $S \cup C$ is connected and $\mathcal{H}^1(S)$ is minimal.

Some properties (in a full generality proved by Stepanov and Paolini, 2013)

- S exists;
- S contains no loops;
- Only two variants of a neighbourhood of a point $x \in S \setminus C$:
 - a regular tripod (x is a branching point);
 - a segment; x is an inner point.
- ${\cal S}$ contains at most countable number of branching points

Let C be a compact subset of \mathbb{R}^d . To find closed S such that $S \cup C$ is connected and $\mathcal{H}^1(S)$ is minimal.

Some properties (in a full generality proved by Stepanov and Paolini, 2013)

- S exists;
- S contains no loops;
- Only two variants of a neighbourhood of a point $x \in S \setminus C$:
 - a regular tripod (x is a branching point);
 - a segment; x is an inner point.
- ${\cal S}$ contains at most countable number of branching points

Let C be a compact subset of \mathbb{R}^d . To find closed S such that $S \cup C$ is connected and $\mathcal{H}^1(S)$ is minimal.

Some properties (in a full generality proved by Stepanov and Paolini, 2013)

- S exists;
- S contains no loops;
- Only two variants of a neighbourhood of a point $x \in S \setminus C$:
 - a regular tripod (x is a branching point);
 - a segment; x is an inner point.
- ${\boldsymbol{S}}$ contains at most countable number of branching points

Steiner tree with infinite number of branching points

Theorem (Paolini–Stepanov–T, 2015; Cherkashin–T. 2023; Paolini–Stepanov 2023)

There is a compact planar set M for which the unique solution of the Steiner problem has infinite number of triple points.

 $M\text{, }\Sigma$ are self-similar fractals with sufficiently small scale.

Figure: Indecomposable Steiner tree with infinite number of triple points

We say that full Steiner tree S connecting finite set $C = \{A_1 \dots A_n\}$ has adding property if there exists such $\varepsilon > 0$ that $\bigcup_{i=1}^n [A_i B_i] \cup S$ is Steiner tree for $\{B_1 \dots B_n\}$ where $|A_i B_i| = \varepsilon$ and B_i belongs to the ray beginning from the segment of S incident A_i .

Theorem

Cherkashin, T., 2022; reformulated Let St be a Steiner tree for terminals $A = (A_1, ..., A_m)$, $A_i \in \mathbb{R}^n$ such that every Steiner tree for an *n*-tuple in the closed 2r-neighbourhood of A has the same topology as St for some positive r. Then St has adding property.

Example: the tripod

Usually the condition holds:

Theorem (Basok, Cherkashin, T., 2022)

For $m \ge 4$ the set of m terminals with non unique Steiner trees has the Hausdorff dimension 2m - 1.

What if the condition does not hold?

We say that full Steiner tree S connecting finite set $C = \{A_1 \dots A_n\}$ has adding property if there exists such $\varepsilon > 0$ that $\bigcup_{i=1}^n [A_i B_i] \cup S$ is Steiner tree for $\{B_1 \dots B_n\}$ where $|A_i B_i| = \varepsilon$ and B_i belongs to the ray beginning from the segment of S incident A_i .

Theorem

Cherkashin, T., 2022; reformulated Let St be a Steiner tree for terminals $A = (A_1, ..., A_m)$, $A_i \in \mathbb{R}^n$ such that every Steiner tree for an *n*-tuple in the closed 2r-neighbourhood of A has the same topology as St for some positive r. Then St has adding property.

Example: the tripod Usually the condition holds:

Theorem (Basok, Cherkashin, T., 2022)

For $m \ge 4$ the set of m terminals with non unique Steiner trees has the Hausdorff dimension 2m - 1.

What if the condition does not hold?

Theorem (Cherkashin, T., 2022)

Let St be a Steiner tree for terminals $A = (A_1, ..., A_m)$, $A_i \in \mathbb{R}^n$ such that every Steiner tree for an *n*-tuple in the closed 2r-neighbourhood of A has the same topology as St for some positive r. Then St has adding property.

It turns out that a Steiner tree for the vertices of a square does not have this property:

Thank you for your attention!

Figure: The left part contains two Steiner trees connecting vertices of a square; the right part provides an example of a Steiner tree with an infinite number of branching points y_i , $i \ge 1$.

Let (X, ρ) be a metric space. For any subset $U \subset X$, let $\operatorname{diam} U$ denote its diameter, that is $\operatorname{diam} U := \sup\{\rho(x, y) : x, y \in U\}$, $\operatorname{diam} \emptyset := 0$. Let S be any subset of X, and $\delta > 0$ a real number. Define

$$H^{d}_{\delta}(S) = \inf\left\{\sum_{i=1}^{\infty} (\operatorname{diam} U_{i})^{d} : \bigcup_{i=1}^{\infty} U_{i} \supseteq S, \operatorname{diam} U_{i} < \delta\right\}$$

where the infimum is over all countable covers of S by sets $U_i \subset X$ satisfying $\operatorname{diam} U_i < \delta.$

Let

$$H^{d}(S) := \sup_{\delta > 0} H^{d}_{\delta} = \lim_{\delta \to 0} H^{d}_{\delta}(S).$$