About some Steiner trees

Yana Teplitskaya

Université Paris-Saclay

Algebraic and geometric methods of analysis
May 29 - June 1, 2023
Problem: to connect a (usually finite) set of points by the shortest connected set (usually at the plane):

We denote by \mathcal{H}^1 the linear Hausdorff measure (roughly speaking, length).

Problem (Euclidean Steiner problem)

Let C be a compact subset of \mathbb{R}^d. To find a closed S such that $S \cup C$ is connected and $\mathcal{H}^1(S)$ is minimal.

If C is totally disconnected then S should be connected.
Problem: to connect a (usually finite) set of points by the shortest connected set (usually at the plane):

\[\begin{align*}
A & \quad \quad \quad B \\
\bullet & \quad \quad \quad \bullet
\end{align*} \]

We denote by \mathcal{H}^1 the linear Hausdorff measure (roughly speaking, length).

Problem (Euclidean Steiner problem)

Let C be a compact subset of \mathbb{R}^d. To find a closed S such that $S \cup C$ is connected and $\mathcal{H}^1(S)$ is minimal.

If C is totally disconnected then S should be connected.
Problem (Euclidean Steiner problem)

Let C be a compact subset of \mathbb{R}^d. To find closed S such that $S \cup C$ is connected and $\mathcal{H}^1(S)$ is minimal.

- S exists;
- S contains no loops;
- only two variants of neighbourhoods for points from $S \setminus C$.

Torricelli point is unique.

No uniqueness :(
Problem (Euclidean Steiner problem)

Let C be a compact subset of \mathbb{R}^d. To find closed S such that $S \cup C$ is connected and $\mathcal{H}^1(S)$ is minimal.

- S exists;
- S contains no loops;
- only two variants of neighbourhoods for points from $S \setminus C$.

No uniqueness :(
Steiner problem for three and four points. General properties

Problem (Euclidean Steiner problem)

Let C be a compact subset of \mathbb{R}^d. To find closed S such that $S \cup C$ is connected and $\mathcal{H}^1(S)$ is minimal.

- S exists;
- S contains no loops;
- only two variants of neighbourhoods for points from $S \setminus C$.

Torricelli point is unique.

No uniqueness :(
Steiner problem for three and four points. General properties

Torricelli point is unique.

No uniqueness :(

Problem (Euclidean Steiner problem)

Let C be a compact subset of \mathbb{R}^d. To find closed S such that $S \cup C$ is connected and $\mathcal{H}^1(S)$ is minimal.

- S exists;
- S contains no loops;
- only two variants of neighbourhoods for points from $S \setminus C$.
Problem (Euclidean Steiner problem)

Let C be a compact subset of \mathbb{R}^d. To find closed S such that $S \cup C$ is connected and $\mathcal{H}^1(S)$ is minimal.

Some properties (in a full generality proved by Stepanov and Paolini, 2013)

- S exists;
- S contains no loops;
- Only two variants of a neighbourhood of a point $x \in S \setminus C$:
 - a regular tripod (x is a **branching point**);
 - a segment; x is an inner point.
- S contains at most countable number of branching points

Usually (if $C \subset S$) $S \cup C$ is called **Steiner tree**, and it is called **indecomposable** (full, irreducible), when $S \setminus C$ is connected. Three directions
Problem (Euclidean Steiner problem)

Let C be a compact subset of \mathbb{R}^d. To find closed S such that $S \cup C$ is connected and $\mathcal{H}^1(S)$ is minimal.

Some properties (in a full generality proved by Stepanov and Paolini, 2013)

- S exists;
- S contains no loops;
- Only two variants of a neighbourhood of a point $x \in S \setminus C$:
 - a regular tripod (x is a branching point);
 - a segment; x is an inner point.
- S contains at most countable number of branching points

Usually (if $C \subseteq S$) $S \cup C$ is called **Steiner tree**, and it is called **indecomposable** (full, irreducible), when $S \setminus C$ is connected. Three directions
Problem (Euclidean Steiner problem)

Let \(C \) be a compact subset of \(\mathbb{R}^d \). To find closed \(S \) such that \(S \cup C \) is connected and \(\mathcal{H}^1(S) \) is minimal.

Some properties (in a full generality proved by Stepanov and Paolini, 2013)

- \(S \) exists;
- \(S \) contains no loops;
- Only two variants of a neighbourhood of a point \(x \in S \setminus C \):
 - a regular tripod (\(x \) is a branching point);
 - a segment; \(x \) is an inner point.
- \(S \) contains at most countable number of branching points

Usually (if \(C \subset S \)) \(S \cup C \) is called Steiner tree, and it is called indecomposable (full, irreducible), when \(S \setminus C \) is connected. Three directions
Problem (Euclidean Steiner problem)

Let C be a compact subset of \mathbb{R}^d. To find closed S such that $S \cup C$ is connected and $\mathcal{H}^1(S)$ is minimal.

Some properties (in a full generality proved by Stepanov and Paolini, 2013)

- S exists;
- S contains no loops;
- Only two variants of a neighbourhood of a point $x \in S \setminus C$:
 - a regular tripod (x is a branching point);
 - a segment; x is an inner point.
- S contains at most countable number of branching points

Usually (if $C \subset S$) $S \cup C$ is called Steiner tree, and it is called indecomposable (full, irreducible), when $S \setminus C$ is connected. Three directions
Theorem (Paolini–Stepanov–T, 2015; Cherkashin–T. 2023; Paolini–Stepanov 2023)

There is a compact planar set M for which the unique solution of the Steiner problem has infinite number of triple points.

M, Σ are self-similar fractals with sufficiently small scale.

Figure: Indecomposable Steiner tree with infinite number of triple points
We say that full Steiner tree S connecting finite set $C = \{A_1 \ldots A_n\}$ has \textit{adding property} if there exists such $\varepsilon > 0$ that $\bigcup_{i=1}^{n} [A_iB_i] \cup S$ is Steiner tree for $\{B_1 \ldots B_n\}$ where $|A_iB_i| = \varepsilon$ and B_i belongs to the ray beginning from the segment of S incident A_i.

\textbf{Theorem}

\textit{Cherkashin, T., 2022; reformulated} Let St be a Steiner tree for terminals $A = (A_1, ..., A_m)$, $A_i \in \mathbb{R}^n$ such that every Steiner tree for an n-tuple in the closed $2r$-neighbourhood of A has the same topology as St for some positive r. Then St has adding property.

\textbf{Example: the tripod}

Usually the condition holds:

\textbf{Theorem (Basok, Cherkashin, T., 2022)}

For $m \geq 4$ the set of m terminals with non unique Steiner trees has the Hausdorff dimension $2m - 1$.

What if the condition does not hold?
We say that full Steiner tree S connecting finite set $C = \{A_1 \ldots A_n\}$ has *adding property* if there exists such $\varepsilon > 0$ that $\bigcup_{i=1}^{n}[A_iB_i] \cup S$ is Steiner tree for $\{B_1 \ldots B_n\}$ where $|A_iB_i| = \varepsilon$ and B_i belongs to the ray beginning from the segment of S incident A_i.

Theorem

Cherkashin, T., 2022; reformulated Let St be a Steiner tree for terminals $A = (A_1, \ldots, A_m)$, $A_i \in \mathbb{R}^n$ such that every Steiner tree for an n-tuple in the closed $2r$-neighbourhood of A has the same topology as St for some positive r. Then St has adding property.

Example: the tripod

Usually the condition holds:

Theorem (Basok, Cherkashin, T., 2022)

*For $m \geq 4$ the set of m terminals with non unique Steiner trees has the Hausdorff dimension $2m - 1$.***

What if the condition does not hold?
Theorem (Cherkashin, T., 2022)

Let S_t be a Steiner tree for terminals $A = (A_1, ..., A_m)$, $A_i \in \mathbb{R}^n$ such that every Steiner tree for an n-tuple in the closed $2r$-neighbourhood of A has the same topology as S_t for some positive r. Then S_t has adding property.

It turns out that a Steiner tree for the vertices of a square does not have this property:
Figure: The left part contains two Steiner trees connecting vertices of a square; the right part provides an example of a Steiner tree with an infinite number of branching points y_i, $i \geq 1$.
Let \((X, \rho)\) be a metric space. For any subset \(U \subset X\), let \(\text{diam } U\) denote its diameter, that is \(\text{diam } U := \sup\{\rho(x, y) : x, y \in U\}\), \(\text{diam } \emptyset := 0\).

Let \(S\) be any subset of \(X\), and \(\delta > 0\) a real number. Define

\[
H^d_\delta(S) = \inf \left\{ \sum_{i=1}^{\infty} (\text{diam } U_i)^d : \bigcup_{i=1}^{\infty} U_i \supseteq S, \text{diam } U_i < \delta \right\}
\]

where the infimum is over all countable covers of \(S\) by sets \(U_i \subset X\) satisfying \(\text{diam } U_i < \delta\).

Let

\[
H^d(S) := \sup_{\delta > 0} H^d_\delta = \lim_{\delta \to 0^+} H^d_\delta(S).
\]