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Let E be an oriented vector bundle over a manifold M of rank 4n and h a neutral metric of . We
call a section N of End E a nilpotent structure of E if on a neighborhood of each point of M, there
exists an ordered frame field e = (eq, ..., €2, €2n+1,- - -, €4n) Of E satisfying

h(ei,ei) = _h(62n+ia€2n+i) =1 (’L = 1, e ,2n), h(ei,ej) = 0 (’L 7& j) (1)

and Ne = eA,,, where
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I, is the n X n unit matrix and O, is the n X n zero matrix. Let N be a nilpotent structure of . We
call N an e-nilpotent structure (¢ € {4, —}) if on a neighborhood of each point of M, there exists an
ordered frame field e giving the orientation of £ and satisfying (fl) and Nel ine = €l An with
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Let N be an e-nilpotent structure of F. Then such a frame field as e is called an admissible frame
field of N. For an admissible frame field e of N, we set & =& A --- A &opy, where
§1:=e1 — ey, & = e — ey, .
i=2,...,n).
En+1 i= €nt1 + €€3n41, Enti = €ntit+ €3nti

Then ¢ does not depend on the choice of an admissible frame field e of N ([3]). Therefore N gives a
section &y of the 2n-fold exterior power /\QnE of E. A nilpotent structure is characterized by

(i) InN = Ker N, and my := Im N = Ker NV is a light-like subbundle of E of rank 2n,
(ii) h(¢, N¢) =0 for any local section ¢ of E

(2], B])- In particular, N gives a null structure on each fiber of E and h is null-Hermitian with respect
to N (see [9]). The subbundle 7y is locally spanned by &1, ..., &ap.

Remark Suppose n = 1. Then /\2E is a vector bundle over M of rank 6 and h induces a metric h of
A%E of signature (2,4). In addition, A?E is decomposed as \*E = /\iE ® A2 E by two subbundles

/\iE, A2 E of rank 3 and the restriction of h on each of them has signature (1,2). The light-like
twistor spaces associated with E are fiber bundles Uy ( /\iE) in /\iE respectively such that each fiber
is a light cone. Each light-like line subbundle of /\iE or /\2_E corresponds to a light-like subbundle
of E of rank 2 and each e-nilpotent structure N of E corresponds to a section of Uy (/\?E) given
by (1/v2)én (2], [3]). The space-like twistor spaces U (/\iE) associated with E are fiber bundles

in /\iE respectively such that each fiber is a hyperboloid of two sheets. A section of Uy (/\gE)
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corresponds to a complex structure of E preserving h. See [1], [5] for the space-like twistor spaces.
The time-like twistor spaces U_ (/\iE) associated with E are fiber bundles in /\iE respectively such

that each fiber is a hyperboloid of one sheet. A section of U_ (/\zE) corresponds to a paracomplex

structure of F reversing h. See [1], [13], [14] for the time-like twistor spaces. See [{], [10], [L1] for the
twistor spaces in the case h is a Riemannian (i.e., positive-definite) metric, which are the prototypes

of Uy (ALE), U-(ALE) and Up(A\LE).

Let V be a connection of F satisfying Vh = 0. Let N be an e-nilpotent structure of E. We say that
N satisfies the Walker condition with respect to V if for any local section ¢ of my, V4 is a 1-form
valued in 7y. See [6], [9], [16] for Walker manifolds. Let V be the connection of A*"E induced by V.
Then N satisfies the Walker condition with respect to V if and only if @f N =a® &y for a 1-form a.
If VN =0, then V&y = 0 ([4]) and therefore N satisfies the Walker condition ([d]).

The main objects of research in this talk are special nilpotent structures, and they are called
H-nilpotent structures of (E,h,V), where H is a Lie subgroup of SO(2n,2n) related to neutral hy-
perKéhler structures. There exist a complex structure I and paracomplex structures Jy, Jo of E
such that h, V, I, Ji, Jy form a neutral hyperKéhler structure of E if and only if there exists an
H-nilpotent structure of (E,h,V) ([4]). See [B], [12] for paraquaternionic structures. See [§], [15] for
neutral hyperKéahler 4-manifolds.
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