Taras Banakh

(Ivan Franko National University of Lviv) *E-mail:* t.o.banakh@gmail.com

Definition 1. A *corps* is a set *F* endowed with two binary operations $+$, \cdot : $F \times F \rightarrow F$ and two distinct constants $0, 1 \in F$ that satisfy the following eight axioms:

(1) $\forall x, y, z \in F$ $(x + (y + z) = (x + y) + z);$ (2) $∀x ∈ F (x + 0 = x = 0 + x);$ (3) $\forall x \in F \exists y \in F \ (x + y = 0 = y + x);$ (4) $\forall x, y, z \in F$ $(x \cdot (y \cdot z) = (x \cdot y) \cdot z);$ (5) $\forall x \in F$ $(x \cdot 1 = x = 1 \cdot x);$ (6) $\forall x \in F \setminus \{0\} \exists y \in F \ (x \cdot y = 1 = y \cdot x);$ (7) $\forall a, x, y \in F$ $(a \cdot (x + y) = a \cdot x + a \cdot y);$ $(8) \ \forall x, y, b \in F \ \ ((x + y) \cdot b = x \cdot b + y \cdot b).$

A corps *F* is called a *field* if $x \cdot y = y \cdot x$ for all elements $x, y \in F$.

Definition 2. A *procorps*^{[1](#page-0-0)} is a set *F* endowed with two binary operations $+$, \cdot : $F \times F \to F$ and three distinct constants $0, 1, \infty \in F$ that satisfy the following nine axioms:

- (1) $\forall x, z \in F \ \forall y \in F \ \setminus \{\infty\} \ \ (x + (y + z) = (x + y) + z);$
- (2) $∀x, y ∈ F (x + y = y + x);$
- (3) $\forall x \in F$ $(x+0=x=0+x);$
- (4) $\forall x, z \in F \ \forall y \in F \setminus \{0, \infty\} \ (x \cdot (y \cdot z) = (x \cdot y) \cdot z);$
- (5) $\forall x \in F$ $(x \cdot 1 = x = 1 \cdot x);$
- (6) $\forall x \in F \exists y \in F \ (x \cdot y = 1 = y \cdot x);$
- (7) $\forall a \in F \setminus \{0, \infty\}$ $\forall x, y \in F \ (a \cdot (x + y) = a \cdot x + a \cdot y);$
- $(8) \ \forall x, y \in F \ \forall b \in F \setminus \{0, \infty\} \ \left((x+y) \cdot b = x \cdot b + y \cdot b \right);$
- (9) $0 \cdot 0 = 0$, $\infty \cdot \infty = \infty$ and $1 + \infty = \infty = \infty + 1$.

A procorp *F* is called a *profield* if $x \cdot y = y \cdot x$ for all elements $x, y \in F$.

Example 3. Let *F* be a corps and $\infty \notin F$. Consider the set $\overline{F} := F \cup \{\infty\}$, and extend the operations of addition and multiplication from F to \overline{F} letting

$$
\forall x \in \overline{F} \setminus \{\infty\} \ (x + \infty = \infty = \infty + x),
$$

$$
\forall x \in \overline{F} \setminus \{0\} \ (x \cdot \infty = \infty = \infty \cdot x),
$$

$$
\infty + \infty = 0, \ \infty \cdot 0 = 1 = 0 \cdot \infty.
$$

The set \bar{F} endowed with the extended operations of addition and multiplication and the constants 0, 1, ∞ is a procorps, called the *projective* ∞ *-extension* of the corps *F*. If *F* is a field, then its projective ∞ -extension \overline{F} is a profield.

Example 4. The Riemannian sphere $\overline{C} = C \cup \{\infty\}$ is the projective ∞ -extension of the field of complex numbers C.

The following theorem shows that procorps are exactly projective *∞*-extensions of corps.

Theorem 5. For every procorps (profield) \overline{F} , the set $F := \overline{F} \setminus \{\infty\}$ endowed with the induced *operations of addition and multiplication is a corps (field) and* \overline{F} *is the projective* ∞ *-extension of* F *.*

¹*Procorps* is an abbreviation of a "projective corps".