Taras Banakh

(Ivan Franko National University of Lviv) *E-mail:* t.o.banakh@gmail.com

Definition 1. A corps is a set F endowed with two binary operations $+, \cdot : F \times F \to F$ and two distinct constants $0, 1 \in F$ that satisfy the following eight axioms:

 $\begin{array}{ll} (1) \ \forall x, y, z \in F \ \left(x + (y + z) = (x + y) + z\right); \\ (2) \ \forall x \in F \ \left(x + 0 = x = 0 + x\right); \\ (3) \ \forall x \in F \ \exists y \in F \ (x + y = 0 = y + x); \\ (4) \ \forall x, y, z \in F \ (x \cdot (y \cdot z) = (x \cdot y) \cdot z); \\ (5) \ \forall x \in F \ (x \cdot 1 = x = 1 \cdot x); \\ (6) \ \forall x \in F \setminus \{0\} \ \exists y \in F \ (x \cdot y = 1 = y \cdot x); \\ (7) \ \forall a, x, y \in F \ \left(a \cdot (x + y) = a \cdot x + a \cdot y\right); \\ (8) \ \forall x, y, b \in F \ \left((x + y) \cdot b = x \cdot b + y \cdot b\right). \end{array}$

A corps F is called a *field* if $x \cdot y = y \cdot x$ for all elements $x, y \in F$.

Definition 2. A *procorps*¹ is a set F endowed with two binary operations $+, \cdot : F \times F \to F$ and three distinct constants $0, 1, \infty \in F$ that satisfy the following nine axioms:

- (1) $\forall x, z \in F \ \forall y \in F \setminus \{\infty\} \ (x + (y + z) = (x + y) + z);$
- (2) $\forall x, y \in F \ (x+y=y+x);$
- (3) $\forall x \in F \ (x+0=x=0+x);$
- (4) $\forall x, z \in F \ \forall y \in F \setminus \{0, \infty\} \ (x \cdot (y \cdot z) = (x \cdot y) \cdot z);$
- (5) $\forall x \in F \ (x \cdot 1 = x = 1 \cdot x);$
- (6) $\forall x \in F \exists y \in F \ (x \cdot y = 1 = y \cdot x);$
- (7) $\forall a \in F \setminus \{0, \infty\} \ \forall x, y \in F \ (a \cdot (x+y) = a \cdot x + a \cdot y);$
- (8) $\forall x, y \in F \ \forall b \in F \setminus \{0, \infty\} \ ((x+y) \cdot b = x \cdot b + y \cdot b);$
- (9) $0 \cdot 0 = 0$, $\infty \cdot \infty = \infty$ and $1 + \infty = \infty = \infty + 1$.

A procorp F is called a *profield* if $x \cdot y = y \cdot x$ for all elements $x, y \in F$.

Example 3. Let F be a corps and $\infty \notin F$. Consider the set $\overline{F} := F \cup \{\infty\}$, and extend the operations of addition and multiplication from F to \overline{F} letting

$$\begin{aligned} \forall x \in \bar{F} \setminus \{\infty\} \ (x + \infty = \infty = \infty + x), \\ \forall x \in \bar{F} \setminus \{0\} \ (x \cdot \infty = \infty = \infty \cdot x), \\ \infty + \infty = 0, \quad \infty \cdot 0 = 1 = 0 \cdot \infty. \end{aligned}$$

The set \overline{F} endowed with the extended operations of addition and multiplication and the constants $0, 1, \infty$ is a procorps, called the *projective* ∞ -*extension* of the corps F. If F is a field, then its projective ∞ -extension \overline{F} is a profield.

Example 4. The Riemannian sphere $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ is the projective ∞ -extension of the field of complex numbers \mathbb{C} .

The following theorem shows that procorps are exactly projective ∞ -extensions of corps.

Theorem 5. For every procorps (profield) \overline{F} , the set $F := \overline{F} \setminus \{\infty\}$ endowed with the induced operations of addition and multiplication is a corps (field) and \overline{F} is the projective ∞ -extension of F.

¹*Procorps* is an abbreviation of a "projective corps".