ON TOPOLOGIZATION OF THE BICYCLIC MONOID

Adriana Chornenka

(Ivan Franko National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine) *E-mail:* adriana.chornenka@lnu.edu.ua

Oleg Gutik

(Ivan Franko National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine) *E-mail:* oleg.gutik@lnu.edu.ua

In this paper we shall follow the terminology of [2, 4, 5, 6].

A semigroup S is called *inverse* if for any element $x \in S$ there exists a unique $x^{-1} \in S$ such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$. The element x^{-1} is called the *inverse of* $x \in S$. If S is an inverse semigroup, then the function inv: $S \to S$ which assigns to every element x of S its inverse element x^{-1} is called the *inversion*. On an inverse semigroup S the semigroup operation determines the *natural partial order* \preccurlyeq on S: $s \preccurlyeq t$ if and only if there exists $e \in E(S)$ such that s = te.

A topology τ on a semigroup S is called:

- a semigroup (shift-continuous) topology if (S, τ) is a topological (semitopological) semigroup;
- an *inverse semigroup* topology if (S, τ) is a topological inverse semigroup;
- an *inverse shift-continuous* topology if (S, τ) is a semitopological semigroup with continuous inversion.

The bicyclic monoid C(p,q) is the semigroup with the identity 1 generated by two elements p and q subjected only to the condition pq = 1. The bicyclic monoid admits only the discrete semigroup Hausdorff topology [3]. Bertman and West in [1] extended this result for the case of Hausdorff semi-topological semigroups.

We construct two non-discrete inverse semigroup T_1 -topologies and a compact inverse shift-continuous T_1 -topology on the bicyclic monoid $\mathcal{C}(p,q)$. Also we give conditions on a T_1 -topology τ on $\mathcal{C}(p,q)$ to be discrete.

Theorem 1. Every shift-continuous Baire T_1 -topology τ on the bicyclic monoid $\mathcal{C}(p,q)$ is discrete.

Theorem 2. Let τ be an inverse semigroup T_1 -topology on $\mathcal{C}(p,q)$. If there exists a point $q^i p^j \in \mathcal{C}(p,q)$ such that the space $\uparrow_{\preccurlyeq} q^i p^j$ is quasi-regular at $q^i p^j$, then τ is discrete.

Theorem 3. Let τ be a shift-continuous T_1 -topology on the bicyclic monoid $\mathcal{C}(p,q)$ such that the maps $\mathcal{C}(p,q) \to E(\mathcal{C}(p,q)), x \mapsto xx^{-1}$ and $\mathcal{C}(p,q) \to E(\mathcal{C}(p,q)), x \mapsto x^{-1}x$ are continuous. If there exists a point $q^i p^j \in \mathcal{C}(p,q)$ such that the space $\mathfrak{z}_{\preccurlyeq} q^i p^j$ is semiregular at $q^i p^j$, then τ is discrete.

References

- M. O. Bertman and T. T. West, Conditionally compact bicyclic semitopological semigroups, Proc. Roy. Irish Acad. A76 (1976), no. 21–23, 219–226.
- [2] J. H. Carruth, J. A. Hildebrant, and R. J. Koch, The theory of topological semigroups, Vol. I, Marcel Dekker, Inc., New York and Basel, 1983.
- [3] C. Eberhart and J. Selden, On the closure of the bicyclic semigroup, Trans. Amer. Math. Soc. 144 (1969), 115–126.
- [4] R. Engelking, General topology, 2nd ed., Heldermann, Berlin, 1989.
- [5] M. Lawson, Inverse semigroups. The theory of partial symmetries, Singapore: World Scientific, 1998.
- [6] W. Ruppert, Compact semitopological semigroups: an intrinsic theory, Lect. Notes Math., 1079, Springer, Berlin, 1984.