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The objects of study are convex bodies: compact, convex subsets of Euclidean spaces. Convexity
naturally appears in many areas of mathematics, such as Linear Programming, Probability Theory,
Functional Analysis, Partial Differential Equations, Information Theory and Geometry of Numbers.

For instance, density functions of some of the most important probability measures are logarith-
mically (or at least quasi) concave functions, like gaussians, exponential, or uniform densities over
convex domains. In particular, this means that all their level sets are convex. Although convexity is a
simple to formulate property, convex bodies possess a surprisingly rich structure. The main subject of
the proposed project are geometric inequalities and extreme relations between convex sets in general.
Especially, we are interested in extending results given so far only for symmetric convex sets or join
results given separately for the symmetric case and the general case. To do so we want to take a
functional into account that measures how far a convex body C is away from being symmetric. One
such functional is the so called Minkowski (measure of) asymmetry, which measures in terms of the
Banach-Mazur distance how far a set is from its closest symmetric set.

We start explaining some notation, which is mostly standard in convex geometry. For details see,
e.g. [10]. For any A,B ⊂ Rn let A ⊂t B denote that there exists a translate of A being a subset of B.
The Minkowski addition of two sets A,B ⊂ Rn is given by the set A + B = {x + y : x ∈ A, y ∈ B}.
Moreover, for any n-dimensional convex set K we denote by ρK := {ρx : x ∈ K} and −K := (−1)K.
For any set convex set K, we say that K is symmetric if K =t −K. Moreover, let K◦ = {x ∈ Rn :
x⊥y ≤ 1 ∀y ∈ K} be the polar of K.

The main object of study in this project is the Minkowski asymmetry of a convex set C, defined as
s(C) = min{ρ > 0 : C ⊂t −ρC},

where we are allowed to write min instead of inf as C is a convex set, and this is true for all similar
functionals we define below. Moreover, if c−C ⊂ s(C)(c−C) we say that c is a Minkowski center of
C, and if c = 0, we say that C is Minkowski centered. It is well known (see e.g. [8]) that for all convex
sets C we have s(C) ∈ [1, n] with s(C) = 1 if and only if C is symmetric and s(C) = n if and only if
C is an n-simplex, i.e., the convex hull of n+ 1 affinely independent points.

Naturally, the Minkowski sum of two convex sets defines a mean. The harmonic, geometric, and
arithmetic means of real numbers a and b are collectively known as the Pythagorean means. They are
related by the extended arithmetic-geometric-harmonic mean inequality (see [10]). Thus, for convex
sets K and C the arithmetic mean is defined as K+C

2 , while the harmonic mean is defined as
(
K◦+C◦

2

)◦.
The minimum and maximum of K and C are represented by K ∩C and conv(K ∪C), respectively. In
the 1960s, Firey introduced and studied different means of convex sets, known as p-means (see [6, 7]).
This line of investigation continues to this day (see [9]).

Notice that the considered symmetrizations of a convex body K, i.e., K ∩ (−K), K−K
2 , conv(K ∪

(−K)), are frequently used in convex geometry, e.g., as extreme cases of a variety of geometric in-
equalities. Consider, e.g., the Bohnenblust inequality [1], which bounds from above the ratio of the
circumradius (minx∈Rn maxy∈K ∥x − y∥) and the diameter (maxx,y∈K ∥x − y∥) of convex bodies in
arbitrary normed spaces endowed with a norm ∥ · ∥ by n/(n+1), and for which equality is reached in
spaces with S ∩ (−S) or 1

2(S − S) as the unit ball [5] where S is a 0-centered regular simplex. These
means also appear in characterizations of spaces, for which K is complete or reduced [4, Prop. 3.5 –
3.10].
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In [6] it was shown that similarly to the Pythagorean means, the means of convex sets can be
ordered in terms of inclusions [6]. Thus, for any convex sets K,C with 0 in their interior we have

K ∩ C ⊂
(
K◦ + C◦

2

)◦
⊂ K + C

2
⊂ conv(K ∪ C). (1)

For a Minkowski-centered convex compact set K we define the factor α(K) to be the smallest
possible factor to cover K ∩ (−K) by conv(K ∪ (−K)), i.e.,

α(K) := inf{ρ > 0 : K ∩ (−K) ⊂ ρ conv(K ∪ (−K))}.
In [2] we show a surprising result, showing that in 2-space the greatest value of the Minkowski

asymmetry such that the harmonic mean can be optimally contained in the arithmetic mean is the
golden ratio φ = 1+

√
5

2 ≈ 1.61. Moreover, if s(K) = φ, there exists a non-singular linear transformation
L, such that

L(K) = conv
({(

−1
−1

)
,

(
−1
0

)
,

(
0
φ

)
,

(
1
0

)
,

(
1
−1

)})
is the golden house.

We also present a family of planar sets Ks with s(Ks) = s ∈ [1, φ], such that α(K) = 1, thus,
showing that for any s ∈ [1, 2] there exists a planar Minkowski centered K with s(K) = s, α(K) = 1.

In [3] we give a complete description the region of all possible values for α(K) for planar Minkowski
centered K in dependence of the asymmetry of K, showing that

2

s(K) + 1
≤ α(K) ≤ min

{
1,

s(K)

s(K)2 − 1

}
.

Moreover, for every pair (α, s), such that 2
s+1 ≤ α ≤ min

{
1, s

s2−1

}
, there exists a Minkowski centered

planar convex set K, such that s(K) = s and α(K) = α.
Surprisingly, in the same paper we were able to describe the number of intersection points of the

boundaries of a convex setK and its negative −K, when its asymmetry is greater than the golden ratio.
Namely, we show that for any Minkowski centered K with s(K) ≥ φ the set bd(K)∩bd(−K) consists
of exactly 6 points. However, when the asymmetry is less than the golden ratio, bd(K)∩bd(−K) can
consist of countable or uncountable number of points, as well as of a small one.

REFERENCES
[1] F. Bohnenblust. Convex regions and projections in Minkowski spaces, Ann. of Math. 39 (1938), no. 2, 301–308.
[2] R. Brandenberg, K. von Dichter, B. González Merino. Relating Symmetrizations of Convex Bodies: Once More the

Golden Ratio, Amer. Math. Monthly 129 (2022), no. 4 , 352–363.
[3] R. Brandenberg, K. von Dichter, B. González Merino. Tightening and reversing the arithmetic-harmonic mean inequality

for symmetrizations of convex sets, Commun. Contemp. Math. 25 (2023), no. 9.
[4] R. Brandenberg, B. González Merino, T. Jahn, H. Martini. Is a complete, reduced set necessarily of constant width?,

Adv. Geom. 19 (2019), no. 1, 31–40.
[5] R. Brandenberg, S. König, Sharpening geometric inequalities using computable symmetry measures, Mathematika 61

(2014), no. 3, 559–580.
[6] W. J. Firey. Polar means of convex bodies and a dual to the Brunn-Minkowski theorem, Canad. J. Math. 13 (1961),

444—453.
[7] W. J. Firey. p-Means of convex bodies, Math. Scand. 10 (1962), 17–24.
[8] B. Grünbaum. Measures of symmetry for convex sets, Proc. Sympos. Pure Math. 7 (1963), 233–270.
[9] V. Milman, L. Rotem. Non-standard constructions in convex geometry: geometric means of convex bodies, In: Carlen,

E., Madiman, M., Werner, E. (eds) Convexity and Concentration. The IMA Volumes in Mathematics and its Applica-
tions 161 (2017), 361–390.

[10] R. Schneider. Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications 44,
Cambridge University Press, Cambridge, 1993.


	References

