Two problems in the theory of metric preserving functions

Viktoriia Bilet

(Institute of Applied Mathematics and Mechanics of the NASU, Cherkasy, Ukraine) *E-mail:* viktoriiabilet@gmail.com

Oleksiy Dovgoshey

(Institute of Applied Mathematics and Mechanics of the NASU, Cherkasy, Ukraine; University of Turku, Turun yliopisto, Finland) *E-mail:* oleksiy.dovgoshey@gmail.com

The following is a particular case of J. Jachymski and F. Turoboś concept, see [1] for more details.

Definition 1. Let **A** be a class of metric spaces. Let us denote by $\mathbf{P}_{\mathbf{A}}$ the set of all functions $f:[0,\infty) \to [0,\infty)$ such that the implication

$$((X,d) \in \mathbf{A}) \Rightarrow ((X, f \circ d) \in \mathbf{A})$$

is valid for every metric space (X, d).

We will use the following notations:

- **F**, set of functions $f: [0, \infty) \to [0, \infty)$;
- M, class of metric spaces;
- U, class of ultrametric spaces;

Definition 2. A function $f \in \mathbf{F}$ is metric preserving (ultrametric preserving) iff $f \in \mathbf{P}_{\mathbf{M}}$ $(f \in \mathbf{P}_{\mathbf{U}})$.

Remark 3. The concept of metric preserving functions can be traced back to Wilson [2]. Similar problems were considered by Blumenthal in [3]. The theory of metric preserving functions was developed by Borsík, Doboš, Piotrowski, Vallin and other mathematicians. See also lectures by Doboš [4], and the introductory paper by Corazza [5]. The study of ultrametric preserving functions begun by P. Pongsriiam and I. Termwuttipong in 2014 [6].

Our main purpose is to give the answers on the following problems.

Problem 4. Let $\mathbf{A} \subseteq \mathbf{P}_{\mathbf{M}}$. Find conditions under which the equation

$$\mathbf{P}_{\mathbf{X}} = \mathbf{A} \tag{1}$$

has a solution $\mathbf{X} \subseteq \mathbf{M}$.

Problem 5. Let $\mathbf{A} \subseteq \mathbf{P}_{\mathbf{U}}$. Find conditions under which equation (1) has a solution $\mathbf{X} \subseteq \mathbf{U}$.

Let us recall some basic concepts of semigroup theory, see, for example, John M. Howie [7].

A semigroup is a pair (S, *) consisting of a nonempty set S and an associative operation $*: S \times S \to S$ which is called the *multiplication* on S. A semigroup S = (S, *) is a *monoid* if there is $e \in S$ such that

$$e * s = s * e = s$$

for every $s \in S$.

Definition 6. Let (S, *) be a semigroup and $\emptyset \neq T \subseteq S$. Then T is a subsemigroup of S if $a, b \in T \Rightarrow a * b \in T$. If (S, *) is a monoid with the identity e, then T is a submonoid of S if T is a subsemigroup of S and $e \in T$.

Solutions to Problems 4 and 5 are given, respectively, in Theorems 7 and 8 below.

Theorem 7. Let \mathbf{A} be a nonempty subset of the set $\mathbf{P}_{\mathbf{M}}$ of all metric preserving functions. Then the following statements are equivalent.

(i) The equality

$$\mathbf{P}_{\mathbf{X}} = \mathbf{A} \tag{2}$$

has a solution $\mathbf{X} \subseteq \mathbf{M}$.

- (*ii*) **A** is a submonoid of (\mathbf{F}, \circ) .
- (*iii*) **A** is a submonoid of $(\mathbf{P}_{\mathbf{M}}, \circ)$.

The next theorem is an ultrametric analog of the previous theorem.

Theorem 8. Let \mathbf{A} be a nonempty subset of the set $\mathbf{P}_{\mathbf{U}}$ of all ultrametric preserving functions. Then the following statements are equivalent.

- (i) The equality $\mathbf{P}_{\mathbf{X}} = \mathbf{A}$ has a solution $\mathbf{X} \subseteq \mathbf{U}$.
- (*ii*) **A** is a submonoid of (\mathbf{F}, \circ) .
- (*iii*) **A** is a submonoid of ($\mathbf{P}_{\mathbf{U}}, \circ$).

Some properties of the monoids of $\mathbf{P}_{\mathbf{M}}$ and $\mathbf{P}_{\mathbf{U}}$ were described in [8] and [9].

Funding. Viktoriia Bilet was partially supported by a grant from the Simons Foundation (Award 1160640, Presidential Discretionary-Ukraine Support Grants, Viktoriia Bilet). Oleksiy Dovgoshey was supported by a grant of Turku University, Finland.

References

- J. Jachymski, F. Turoboś. On functions preserving regular semimetrics and quasimetrics satisfying the relaxed polygonal inequality. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114 (3): 159, 2020.
- W. A. Wilson. On certain types of continuous transformations of metric spaces. American Journal of Mathematics 57 (1): 62–68, 1935.
- [3] L. Blumenthal. Remarks concerning the euclidean four-point property. Ergeb. Math. Kolloq. Wien 7: 7–10, 1936.
- [4] J. Doboš. Metric Preserving Functions. Štroffek, Košice, Slovakia, 1998.
- [5] P. Corazza. Introduction to metric-preserving functions. Amer. Math. Monthly 104 (4): 309–323, 1999.
- [6] P. Pongsriiam, I. Termwuttipong. Remarks on ultrametrics and metric-preserving functions. Abstr. Appl. Anal. 1–9, 2014.
- [7] J. M. Howie. Fundamentals of semigroup theory. Clarendan Press, Oxford, 1995.
- [8] O. Dovgoshey, O. Martio. Functions trasferring metrics to metrics. Beitrage zur Algebra und Geometrie. 54(1): 237–261, 2013.
- [9] O. Dovgoshey. Strongly ultrametric preserving functions. Topology Appl. https:// doi.org/10.1016/jtopol.2024.108931, 2024.