GROUP ACTION ON NONCOMMUTATIVE CURVES

Yuriy Drozd

(Harvard University & Institute of Mathematics of NAS of Ukraine)

E-mail: y.a.drozd@gmail.org

Recall that a noncommutative curve (noc) is a pair $\mathbb{X} = (X, \mathcal{O}_{\mathbb{X}})$, where X is an algebraic curve (the base curve of \mathbb{X}) over a filed \mathbb{k} and $\mathcal{O}_{\mathbb{X}}$ is a sheaf of \mathcal{O}_X -algebras coherent as a sheaf of \mathcal{O}_X -modules. We always suppose that $\mathcal{O}_X \subseteq \mathcal{O}_{\mathbb{X}}$ and the curve \mathbb{X} is reduced, i.e. $\mathcal{O}_{\mathbb{X}}$ has no nilpotent ideals. We also suppose that \mathbb{k} is algebraically closed.

The noc \mathbb{X} is called *hereditary* if gl.dim $\mathcal{O}_{\mathbb{X}} = 1$, that is $\mathcal{E}xt^n_{\mathcal{O}_{\mathbb{X}}}(\mathcal{M}, \mathcal{N}) = 0$ for n > 1 and all coherent sheaves of $\mathcal{O}_{\mathbb{X}}$ -modules \mathcal{M}, \mathcal{N} . We denote by \mathbb{X}^{\sharp} the noc $(\mathcal{O}_X, \mathcal{O}_{\mathbb{X}^{\sharp}})$, where for every point $x \in X$

$$\mathcal{O}_{\mathbb{X}^{\sharp},x} = egin{cases} \mathcal{O}_{\mathbb{X},x} & ext{if } \mathcal{O}_{\mathbb{X},x} ext{is hereditary}, \ \mathcal{E} \, n d_{\mathbb{X},x} \, \mathfrak{r}_{x} & ext{otherwsise}, \end{cases}$$

where $\mathfrak{r}_x = \operatorname{rad} \mathcal{O}_{\mathbb{X},x}$. It is known that if $\mathfrak{r}_x = \operatorname{rad} \mathcal{O}_{\mathbb{X}^\sharp,x}$, the noc \mathbb{X} is hereditary. In this case \mathbb{X} is called a $B\ddot{a}ckstr\ddot{o}m$ curve. If, moreover, $\ell_{\mathcal{O}_{\mathbb{X}}}(\mathcal{O}_{\mathbb{X}^\sharp}\otimes_{\mathcal{O}_{\mathbb{X}}}U\leq 2$ for every simple sheaf of $\mathcal{O}_{\mathbb{X}}$ -modules U, \mathbb{X} is called a nodal curve. Note that a "usual" (commutative) curve X is nodal if and only if all its singularities are simple nodes, that is, if $x\in X$ is a singular point, $\hat{\mathcal{O}}_x\simeq \mathbb{k}[[x,y]]/(xy)$. The structure of nodal nocs is described in [1].

Let a finite group G acts on a noc \mathbb{X} . It means that it acts on the base curve X as well as on the sheaf of algebras $\mathcal{O}_{\mathbb{X}}$ (maybe with a factor set in the sense of [2]). The the noc $\mathbb{X}*G=(X/G,\mathcal{O}_{\mathbb{X}*G})$ (the *crossed product* of \mathbb{X} and G) is defined. Note that G naturally acts on the category $\mathrm{Coh}\,\mathbb{X}$ of coherent $\mathcal{O}_{\mathbb{X}}$ -modules.

Theorem 1. Suppose that the order of the group G is invertible in \mathbb{k} .

- (1) There is an equivalence of categories Coh(X*G) and add((CohX)*G), where add C denotes the Karubian closure of the category C, i.e. the smallest additive category containing C and such that all idempotents in it split.
- (2) If X is hereditary (Bäckström, nodal), so is X * G.

References

- [1] Igor Burban and Yuriy Drozd. Non-commutative nodal curves and derived tame algebras. arXiv:1805.05174 [math.AG] (2018)
- [2] Natan Jacobson. Theory of Rings. AMS, 1943.