NORMAL FORMS OF FUNCTIONS WITH DEGENERATE CRITICAL POINTS ON SURFACES WHOSE STABILIZERS ARE HOMOTOPICALLY NON-TRIVIAL

Bohdan Feshchenko

(Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine) *E-mail:* fb@imath.kiv.ua

Let M be a smooth compact surface, and P be either \mathbb{R} or S^1 . The group of diffeomorphisms $\mathcal{D}(M)$ acts on the space of smooth P-valued functions $C^{\infty}(M,P)$ by the rule:

$$C^{\infty}(M, P) \times \mathcal{D}(M) \to C^{\infty}(M, P) \qquad (f, h) \mapsto f \circ h.$$

For a smooth function $f \in C^{\infty}(M, P)$ we denote by

$$\mathcal{S}(f) = \{ h \in \mathcal{D}(M) \mid f \circ h = f \}, \qquad \mathcal{O}(f) = \{ f \circ h \mid h \in \mathcal{D}(M) \}$$

the *stabilizer* and the *orbit* of f. Homotopy properties of $\mathcal{S}(f)$ and $\mathcal{O}(f)$ and their connected components are well studied for a large class of smooth functions with isolated singularities on surfaces, see [2]. We also denote by $\mathcal{S}_{id}(f)$ a connected component of the identity map id in $\mathcal{S}(f)$.

We consider the following class $\mathcal{F}(M,P)$ of smooth functions: a function f belongs to $\mathcal{F}(M,P)$ if

- (1) for each connected component V of the boundary ∂M a function $f|_V$ either takes a constant value or is a covering map,
- (2) a set of critical points Σ_f of f is a disjoint union of smooth submanifolds of M and $\Sigma_f \subset \operatorname{Int}(M)$,
- (3) for each connected component C of Σ_f and each critical point $p \in C$ there exist a local chart $(U, \phi : U \to \mathbb{R}^2)$ near p and a chart $(V, \psi : V \to \mathbb{R})$ near $f(p) \in P$ such that $f(U) \subset V$ and a local representation $f_p = \psi \circ f \circ \phi^{-1} : \phi(U) \to \psi(V)$ of f is
 - (a) either a polynomial homogeneous polynomial f_p without multiple factors,
 - (b) or is given by $f_C(x,y) = \pm y^{n_C}$ for some $n_C \in \mathbb{N}_{\geq 2}$ depending of C.

Connected components of Σ_f are isolated critical points and critical circles.

Let $\mathcal{F}^0(M, P)$ be a subset of $\mathcal{F}(M, P)$ of function which satisfy (1), (2), (3.b), but instead (3.a) the following condition holds:

(3.a') either a polynomial f_p given by $f_p(x,y) = \pm x^2 \pm y^2$.

For a function $f \in \mathcal{F}(M, P)$ a stabilizer $\mathcal{S}_{id}(f)$ is homotopy equivalent to S^1 if $f \in \mathcal{F}^0(M, P)$, and is contractible otherwise, [1, Theorem 1.2]. Our main result is an analytical characterization of functions from $\mathcal{F}^0(M, P)$, see Theorem 3. The following proposition contains basic facts about functions from $\mathcal{F}^0(M, P)$.

Proposition 1. Let f be a function from $\mathcal{F}^0(M,P)$. Then

- (1) M is one of the following surfaces: $S^1 \times [0,1]$, D^2 , S^2 or T^2 .
- (2) a function $f: M \to P$ is always null-homotopic if M is not a torus. A function on torus can be either null-homotopic or not null-homotopic.
- (3) f has any finite number of critical circles if $M = S^1 \times [0,1]$, D^2 , S^1 , or T^2 and f is not null-homotopic. If $M = T^2$ and f is null-homotopic, then f has at least 2 critical circles.
- (4) If $M = S^1 \times [0,1]$ or T^2 , then f does not have isolated critical points. If $M = D^2$ or S^2 , a function f has one and two non-degenerate extremes respectively.

To state our main result we need the following definition.

Definition 2 (Primitive functions). Let $f_0: M \to P$ be a smooth function

(1) $M = S^1 \times [0,1] = \{(z,s) | z \in \mathbb{C}, |z| = 1, 0 \le s \le 1\}$, and $f_0 : S^1 \times [0,1] \to \mathbb{R}$ is given by $f_0(\phi,s) = s$;

2 B. Feshchenko

- (2) $M = D^2 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$, and $f_0 : D^2 \to \mathbb{R}$ is given by $f_0(x, y) = \pm x^2 \pm y^2$; (3) $M = S^2 = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}$, and $f_0(x, y, z) : S^2 \to \mathbb{R}$ is given by $f_0(x, y, z) = z$;

(3)
$$M = S = \{(x, y, z) \mid x + y + z = 1\}$$
, and $f_0(x, y, z) : S \to \mathbb{R}$ is given by $f_0(x, y, z) = z$;
(4) $M = T^2 = \left\{ (x, y, z) \in \mathbb{R}^3 \mid \left(\sqrt{x^2 + y^2} - 2 \right)^2 + z^2 = 1 \right\}$, and $f_0 : T^2 \to \mathbb{R}$ is given by $f_0(x, y, z) = z$;

(5) $M = T^2 = \{(w, z) \in \mathbb{C}^2 \mid |z| = |w| = 1\}, \text{ and } f_0 : T^2 \to S^1 \text{ is given by } f_0(w, z) = z.$

Obviously that functions from (1)–(4) belongs to $\mathcal{F}^0(M,P)$. They are height functions for (1)–(4), and a function from (5) is an angular projection. These functions have a minimum possible number of critical submanifolds, and we will call them *primitive functions*.

Theorem 3. Let f be a smooth function from $\mathcal{F}^0(M,P)$ and $f_0 \in \mathcal{F}^0(M,P)$ be a primitive function. A function f admits a decomposition

$$f = \varkappa \circ f_0 \circ h^{-1} \tag{1}$$

for some diffeomorphism $h: M \to M$ and a smooth function $\varkappa: \operatorname{Im}(f_0) \to P$ satisfying the following conditions:

- (A) \varkappa has the only finite number of critical points in which it is not flat, i.e., not all derivatives of z at each critical point vanish,
- (B) \varkappa does not have extremes at $f_0(\Sigma_{f_0}^0)$ and $f_0(\partial M)$.

In particular, if $f \in \mathcal{F}^0(T^2, P)$ is null-homotopic, then f_0 is given by (4), and by (5) otherwise. A factorization (1) is not unique and depends on the choice of h.

References

- [1] Bohdan Feshchenko. Homotopy type of stabilizers of circle-valued functions with non-isolated singularities on surfaces, arXiv:2305.08255, 9 p., 2023
- [2] Sergiy Maksymenko. Deformations of functions on surfaces Proceedings of Institute of Mathematics of NAS of Ukraine, 17, no. 2 (2020) 150-199.