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The Marcinkiewicz interpolation theorems for linear operators acting on Lebesgue spaces turned
out to be a powerful tool for studying regularity of solutions for linear PDEs in Lp-spaces. The K-
method introduced by J. Peetre ([5, 6]) allowed to extend the study of regularity of solutions of linear
equations on spaces different from Lp-spaces. The main difficulty to apply Peetre’s definition is the
identification of the interpolation spaces between two normed spaces embedded in a same topological
space. In [2, 3, 4] we did such a study with applications to linear PDEs using new non-standard spaces
as grand or small Lebesgue spaces and GΓ-gamma spaces.
In [7] L. Tartar gave interpolation results on nonlinear Hölderian mappings (which include Lipschitz
mappings) and applied them to a variety of boundary value problems as bilinear applications, semi-
linear PDEs but also on variational inequalities.
In this talk we present some results contained in the recent paper [1], were we extend Tartar’s results
on nonlinear interpolation of α-Hölderian mappings T by studying the action of the mappings T
on K-functionals and between interpolation spaces with logarithm functors. Therefore, we identify
some interpolation spaces using couples of Lebesgue or Lorentz spaces, recovering spaces as Lorentz–
Zygmund spaces or GΓ-gamma spaces.
We apply these results to obtain regularity on the gradient of the weak or entropic-renormalized

solution u to quasilinear equations of the form
−div(â(∇u)) + V (x;u) = f, u = 0 on ∂Ω, (1)

associated to the Dirichlet homogeneous condition on the boundary, where Ω is a bounded smooth
domain of Rn, â(∇u) = |∇u|p−2∇u, V is a nonlinear potential and f belongs to non-standard spaces
like Lorentz-Zygmund spaces. We also show that the mapping T : T f = ∇u is locally or globally
α-Hölderian under suitable values of α and appropriate assumptions on V and â.
Furthermore, also the anisotropic version or the variable exponents version of the Laplacian are

considered.
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