RIEMANN INTEGRATION ON A SPACE WITH A FRACTAL STRUCTURE

José F. Gálvez-Rodríguez

(University of Almería) *E-mail:* jgr409@ual.es

Cristina Martín-Aguado

(University of Almería)

 $E ext{-}mail:$ cristina_martinaguado@yahoo.es

Miguel A. Sánchez-Granero

(University of Almería) E-mail: misanche@ual.es

In this work we start developing a Riemann-type integration theory on spaces which are equipped with a fractal structure (see [1] for more details). The definition of a fractal structure is the next one:

Definition 1. A fractal structure Γ on a set X is a countable family of coverings $\Gamma = \{\Gamma_n : n \in \mathbb{N}\}$ such that Γ_{n+1} is a strong refinement of Γ_n for each $n \in \mathbb{N}$. Γ_2 is said to be a strong refinement of Γ_1 if Γ_2 is a refinement of Γ_1 (that is, each element of Γ_2 is contained in some element of Γ_1) and for each $B \in \Gamma_1$ it holds that $B = \bigcup \{A \in \Gamma_2 : A \subseteq B\}$. Cover Γ_n is called level n of the fractal structure.

We require to define a concept first:

Definition 2. Let (X, \mathcal{S}, μ) be a measure space and Γ be a fractal structure on X. Γ is said to be μ -disjoint if the following conditions hold:

- (1) $\Gamma_n \subseteq \mathcal{S}$ is countable for each $n \in \mathbb{N}$.
- (2) $\mu(B \cap J) = 0$ for each $B, J \in \Gamma_n$ such that $B \neq J$ and each $n \in \mathbb{N}$.
- (3) $\mu(A) < \infty$ for each $A \in \Gamma_n$ and each $n \in \mathbb{N}$.

Next, we define the Darboux sums with respect to a measure and a fractal structure:

Definition 3. Let (X, S, μ) be a measure space, $\Gamma = \{\Gamma_n : n \in \mathbb{N}\}$ be a μ -disjoint fractal structure, and $f: X \to \mathbb{R}$ be a bounded function. Then, for each $J \in \Gamma_n$, we set $m(f; J) = \inf\{f(x) : x \in J\}$ and $M(f; J) = \sup\{f(x) : x \in J\}$, so that the lower and upper Darboux sums with respect to μ for each level of the fractal structure are given by

$$L(f; \Gamma_n, \mu) = \sum_{J \in \Gamma_n} m(f; J) \mu(J) \quad \text{and} \quad U(f; \Gamma_n, \mu) = \sum_{J \in \Gamma_n} M(f; J) \mu(J).$$

The lower and upper Riemann integrals with respect to a measure and a fractal structure are defined as follows:

Definition 4. Let (X, \mathcal{S}, μ) be a measure space, $\Gamma = \{\Gamma_n : n \in \mathbb{N}\}$ be a μ -disjoint fractal structure on X, and $f: X \to \mathbb{R}$ be a bounded function. We define the lower and upper Riemann integrals of f with respect to μ and Γ on X as follows:

(1) Upper Riemann integral of f with respect to μ and Γ :

$$\int_{X}^{(\mu,\Gamma)} f := \inf\{U(f;\Gamma_n;\mu) : n \in \mathbb{N}\} = \lim_{n \to \infty} U(f;\Gamma_n;\mu).$$

(2) Lower Riemann integral of f with respect to μ and Γ :

$$\underline{\int_X}^{(\mu,\Gamma)} f := \sup\{L(f;\Gamma_n;\mu) : n \in \mathbb{N}\} = \lim_n L(f;\Gamma_n;\mu).$$

Now we give the defition of a Riemann-integrable function.

Definition 5. Let (X, \mathcal{S}, μ) be a measure space, $\Gamma = \{\Gamma_n : n \in \mathbb{N}\}$ be a μ -disjoint fractal structure on X and $f: X \to \mathbb{R}$ be a bounded function. f is said to be Riemann-integrable with respect to μ and Γ on X if $\overline{\int_X}^{(\mu,\Gamma)} f$ is finite and $\int_X^{(\mu,\Gamma)} f = \overline{\int_X^{(\mu,\Gamma)}} f$.

If f is Riemann-integrable with respect to μ and Γ on X, we define the Riemann integral of f with respect to μ and Γ on X, $\int_X^{(\mu,\Gamma)} f$, by $\int_X^{(\mu,\Gamma)} f = \underline{\int_X^{(\mu,\Gamma)}} f = \overline{\int_X^{(\mu,\Gamma)}} f$. We denote by $R(X;\mu;\Gamma)$ the set of Riemann-integrable functions with respect to μ and Γ on X.

The next step is defining the Riemann sum relative to a collection of points in a certain level of Γ .

Definition 6. Let Γ be a fractal structure on a space X such that Γ_n is countable for each $n \in \mathbb{N}$. A selection for Γ_n is a collection of points $\xi := (x_A)_{A \in \Gamma_n}$ such that $x_A \in A$ for each $A \in \Gamma_n$.

Definition 7. Let (X, \mathcal{S}, μ) be a measure space, $\Gamma = \{\Gamma_n : n \in \mathbb{N}\}$ be a μ -disjoint fractal structure on X and $f: X \to \mathbb{R}$ be a bounded function. Let $n \in \mathbb{N}$ and $\xi = (x_A)_{A \in \Gamma_n}$ be a selection for Γ_n . The Riemann sum for f relative to Γ_n , ξ and μ is defined as $S(f; \Gamma_n; \xi; \mu) := \sum_{A \in \Gamma_n} f(x_A) \mu(A)$.

The following theorem is analogous to the Riemann's Theorem in \mathbb{R}^n , but for bounded functions defined on a space with a μ -disjoint fractal structure.

Theorem 8. Let (X, \mathcal{S}, μ) be a measure space, $\Gamma = \{\Gamma_n : n \in \mathbb{N}\}$ be a μ -disjoint fractal structure on $X, f: X \to \mathbb{R}$ be a bounded function and $C \in \mathbb{R}$. The following statements are equivalent:

- (1) $f \in R(X; \mu; \Gamma)$ and $\int_X^{(\mu, \Gamma)} f = C$. (2) Given $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $|C S(f; \Gamma_n; \xi_n; \mu)| < \varepsilon$ for each $n \ge n_0$ and each
- (3) Given $\varepsilon > 0$, there exists $n \in \mathbb{N}$ such that $|C S(f; \Gamma_n; \xi; \mu)| < \varepsilon$ for each selection for Γ_n , ξ . (4) $S(f; \Gamma_m; \xi_m; \mu) \xrightarrow{m \to \infty} C$ for each sequence (ξ_m) such that ξ_m is a selection for Γ_m for each

The next result is crucial in order to justify that the Riemann integral of a bounded function with respect to a measure and a fractal structure does not depend on the fractal structure.

Proposition 9. Let (X, \mathcal{S}, μ) be a measure space, $\Gamma = \{\Gamma_n : n \in \mathbb{N}\}$ and $\Gamma^* = \{\Gamma_n^* : n \in \mathbb{N}\}$ be two μ -disjoint fractal structures on X and $f: X \to \mathbb{R}$ be a bounded function. If $f \in R(X; \mu; \Gamma)$ and $f \in R(X; \mu; \Gamma^*)$, then $\int_X^{(\mu, \Gamma)} f = \int_X^{(\mu, \Gamma^*)} f$.

Hence, it does make sense to introduce the following concept:

Definition 10. Let (X, \mathcal{S}, μ) be a measure space and $f: X \to \mathbb{R}$ be a bounded function. f is said to be μ -Riemann-integrable if there exists a μ -disjoint fractal structure Γ on X such that f is Riemannintegrable on X with respect to μ and Γ . Moreover, if so, the integral is defined as $\int_X^{\mu} f = \int_X^{(\mu,\Gamma)} f$.

Proposition 11. Let (X, \mathcal{S}, μ) be a finite measure space and $f: X \to \mathbb{R}$ be a bounded measurable function. Then $f \in R(X; \mu)$ and $\int_X^{\mu} f = \int f d\mu$.

Hence, if Γ is a μ -disjoint fractal structure on X such that f is Riemann-integrable with respect to μ and Γ , we can calculate $\int f d\mu$ as $\int_X^{(\mu,\Gamma)} f$. It also follows that if μ is a finite measure on the Borel σ -algebra of a topological space X and $f: X \to \mathbb{R}$ is a bounded continuous map, then f is μ -Riemann-integrable on X.

References

[1] José F. Gálvez-Rodríguez, Cristina Martín-Aguado and Miguel A. Sánchez-Granero. Riemann Integral on Fractal Structures. $Mathematics,\ 12(2):\ 310,\ 2024.$