RiEMANN INTEGRATiON ON A SPACE WiTH A FRACTAL STRUCTURE

José F. Gálvez-Rodríguez

(University of Almería) *E-mail:* jgr409@ual.es

Cristina Martín-Aguado (University of Almería)

E-mail: cristina_martinaguado@yahoo.es

Miguel A. Sánchez-Granero

(University of Almería) *E-mail:* misanche@ual.es

In this work we start developing a Riemann-type integration theory on spaces which are equipped witha fractal structure (see [[1](#page-2-0)] for more details). The definition of a fractal structure is the next one:

Definition 1. A fractal structure **Γ** on a set *X* is a countable family of coverings $\mathbf{\Gamma} = {\{\Gamma_n : n \in \mathbb{N}\}}$ such that Γ_{n+1} is a strong refinement of Γ_n for each $n \in \mathbb{N}$. Γ_2 is said to be a strong refinement of Γ₁ if Γ₂ is a refinement of Γ₁ (that is, each element of Γ₂ is contained in some element of Γ₁) and for each $B \in \Gamma_1$ it holds that $B = \bigcup \{A \in \Gamma_2 : A \subseteq B\}$. Cover Γ_n is called level *n* of the fractal structure.

We require to define a concept first:

Definition 2. Let (X, \mathcal{S}, μ) be a measure space and **Γ** be a fractal structure on X. **Γ** is said to be μ -disjoint if the following conditions hold:

- (1) $\Gamma_n \subseteq \mathcal{S}$ is countable for each $n \in \mathbb{N}$.
- (2) $\mu(B \cap J) = 0$ for each $B, J \in \Gamma_n$ such that $B \neq J$ and each $n \in \mathbb{N}$.
- (3) $\mu(A) < \infty$ for each $A \in \Gamma_n$ and each $n \in \mathbb{N}$.

Next, we define the Darboux sums with respect to a measure and a fractal structure:

Definition 3. Let (X, \mathcal{S}, μ) be a measure space, $\mathbf{\Gamma} = {\{\Gamma_n : n \in \mathbb{N}\}}$ be a *µ*-disjoint fractal structure, and $f: X \to \mathbb{R}$ be a bounded function. Then, for each $J \in \Gamma_n$, we set $m(f; J) = \inf\{f(x) : x \in J\}$ and $M(f; J) = \sup\{f(x) : x \in J\}$, so that the lower and upper Darboux sums with respect to μ for each level of the fractal structure are given by

$$
L(f; \Gamma_n, \mu) = \sum_{J \in \Gamma_n} m(f; J) \mu(J) \quad \text{and} \quad U(f; \Gamma_n, \mu) = \sum_{J \in \Gamma_n} M(f; J) \mu(J).
$$

The lower and upper Riemann integrals with respect to a measure and a fractal structure are defined as follows:

Definition 4. Let (X, \mathcal{S}, μ) be a measure space, $\mathbf{\Gamma} = {\{\Gamma_n : n \in \mathbb{N}\}}$ be a μ -disjoint fractal structure on *X*, and $f: X \to \mathbb{R}$ be a bounded function. We define the lower and upper Riemann integrals of *f* with respect to μ and Γ on X as follows:

(1) Upper Riemann integral of f with respect to μ and Γ :

$$
\overline{\int_X}^{(\mu,\Gamma)} f := \inf \{ U(f;\Gamma_n;\mu) : n \in \mathbb{N} \} = \lim_n U(f;\Gamma_n;\mu).
$$

(2) Lower Riemann integral of *f* with respect to *µ* and **Γ**:

$$
\underline{\int_X}^{(\mu,\Gamma)} f := \sup \{ L(f; \Gamma_n; \mu) : n \in \mathbb{N} \} = \lim_n L(f; \Gamma_n; \mu).
$$

Now we give the defition of a Riemann-integrable function.

Definition 5. Let (X, \mathcal{S}, μ) be a measure space, $\mathbf{\Gamma} = {\{\Gamma_n : n \in \mathbb{N}\}}$ be a μ -disjoint fractal structure on *X* and $f: X \to \mathbb{R}$ be a bounded function. *f* is said to be Riemann-integrable with respect to μ and **Γ** on *X* if $\overline{f_X}$ (μ, Γ) *f* is finite and \int_X $(\mu, \Gamma) f = \overline{\int_X}$ (μ,Γ) _{f .}

If *f* is Riemann-integrable with respect to *µ* and **Γ** on *X*, we define the Riemann integral of *f* with respect to μ and Γ on X , $\int_{X}^{(\mu,\Gamma)} f$, by $\int_{X}^{(\mu,\Gamma)} f = \int_{X}$ $(\mu,\Gamma)f = \overline{\int_X}$ (μ, Γ) *f.* We denote by $R(X; \mu; \Gamma)$ the set of Riemann-integrable functions with respect to μ and Γ on X.

The next step is defining the Riemann sum relative to a collection of points in a certain level of **Γ**.

Definition 6. Let **Γ** be a fractal structure on a space *X* such that Γ_n is countable for each $n \in \mathbb{N}$. A selection for Γ_n is a collection of points $\xi := (x_A)_{A \in \Gamma_n}$ such that $x_A \in A$ for each $A \in \Gamma_n$.

Definition 7. Let (X, \mathcal{S}, μ) be a measure space, $\mathbf{\Gamma} = {\{\Gamma_n : n \in \mathbb{N}\}}$ be a μ -disjoint fractal structure on *X* and $f: X \to \mathbb{R}$ be a bounded function. Let $n \in \mathbb{N}$ and $\xi = (x_A)_{A \in \Gamma_n}$ be a selection for Γ_n . The Riemann sum for *f* relative to Γ_n , ξ and μ is defined as $S(f; \Gamma_n; \xi; \mu) := \sum_{A \in \Gamma_n} f(x_A) \mu(A)$.

The following theorem is analogous to the Riemann's Theorem in \mathbb{R}^n , but for bounded functions defined on a space with a *µ*-disjoint fractal structure.

Theorem 8. Let (X, \mathcal{S}, μ) be a measure space, $\mathbf{\Gamma} = {\{\Gamma_n : n \in \mathbb{N}\}\}$ be a μ -disjoint fractal structure on $X, f: X \to \mathbb{R}$ *be a bounded function and* $C \in \mathbb{R}$ *. The following statements are equivalent:*

- *(1)* $f \in R(X; \mu; \Gamma)$ *and* $\int_{X}^{(\mu, \Gamma)} f = C$.
- (2) Given $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $|C S(f; \Gamma_n; \xi_n; \mu)| < \varepsilon$ for each $n \geq n_0$ and each *selection for* Γ_n *,* ξ_n *.*
- (3) Given $\varepsilon > 0$, there exists $n \in \mathbb{N}$ such that $|C S(f; \Gamma_n; \xi; \mu)| < \varepsilon$ for each selection for Γ_n , ξ .
- (4) $S(f; \Gamma_m; \xi_m; \mu) \stackrel{m \to \infty}{\longrightarrow} C$ for each sequence (ξ_m) such that ξ_m is a selection for Γ_m for each $m \in \mathbb{N}$.

The next result is crucial in order to justify that the Riemann integral of a bounded function with respect to a measure and a fractal structure does not depend on the fractal structure.

Proposition 9. Let (X, \mathcal{S}, μ) be a measure space, $\mathbf{\Gamma} = {\{\Gamma_n : n \in \mathbb{N}\}\}$ and $\mathbf{\Gamma}^* = {\{\Gamma_n^* : n \in \mathbb{N}\}\}$ be *two* μ -disjoint fractal structures on *X* and $f: X \to \mathbb{R}$ be a bounded function. If $f \in R(X; \mu; \Gamma)$ and $f \in R(X; \mu; \Gamma^*)$, then $\int_{X}^{(\mu, \Gamma)} f = \int_{X}^{(\mu, \Gamma^*)}$ $f^{(\mu,1)}$ *f*.

Hence, it does make sense to introduce the following concept:

Definition 10. Let (X, \mathcal{S}, μ) be a measure space and $f : X \to \mathbb{R}$ be a bounded function. *f* is said to be μ -Riemann-integrable if there exists a μ -disjoint fractal structure **Γ** on *X* such that *f* is Riemannintegrable on *X* with respect to μ and **Γ**. Moreover, if so, the integral is defined as $\int_X^{\mu} f = \int_X^{(\mu,\Gamma)} f$.

Proposition 11. *Let* (X, \mathcal{S}, μ) *be a finite measure space and* $f : X \to \mathbb{R}$ *be a bounded measurable function. Then* $f \in R(X; \mu)$ *and* $\int_X^{\mu} f = \int f d\mu$ *.*

Hence, if Γ is a μ -disjoint fractal structure on X such that f is Riemann-integrable with respect to μ and Γ , we can calculate $\int f d\mu$ as $\int_{X}^{(\mu,\Gamma)} f$. It also follows that if μ is a finite measure on the Borel σ -algebra of a topological space *X* and $f: X \to \mathbb{R}$ is a bounded continuous map, then f is *µ*-Riemann-integrable on *X*.

Riemann Integration on a space with a fractal structure 3

[1] José F. Gálvez-Rodríguez, Cristina Martín-Aguado and Miguel A. Sánchez-Granero. Riemann Integral on Fractal Structures. *Mathematics*, 12(2) : 310, 2024.