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The basic problem in Geometric Topology is the topological classification of manifolds, spaces that
are locally like the usual Euclidean spaces, like the surfaces. More precisely, we study manifolds
that have the same algebraic properties (homotopy equivalences) and we would like to show that
they are equivalent (homeomorphic). There are a lot of conjectures towards this direction with the
strongest being the Isomorphism Conjecture of Farrell-Jones. Furthermore, there are the corresponding
conjectures when the manifolds are equipped with a group of symmetries (group actions). In this
case, all the structures (homotopy equivalences, homeomorphisms) should preserve the group action
(equivariant).

The original idea of the classification problems is Mostow’s Rigidity Theorem in which it was proved
that two hyperbolic manifolds, of dimension larger than 2, which are homotopy equivalent, they are
isometric. This result is the basis of most of the conjectures of classification and rigidity. Usually, one
of the two manifolds has nice properties (nonpositive curvature, hyperbolic fundamental group) and
the other is simply homotopy equivalent to the first. The problem is to equip the second manifold
with the properties of the first through the homotopy equivalence. After that, geometric methods,
similar to the one in Mostow’s Theorem, will give the result.

In the case of interest, we start with Euclidean spaces Rn on which we can define a multiplication
such that, if x, y ̸= 0, then xy ̸= 0. If we insist that the multiplication is associative, then n = 1, 2, 4
from Frobenious Theorem. In the first case we have the multiplication of the reals, in the second case
we have the complex multiplication and in the third case, we have the multiplication on the quaternions
which is not commutative. The corresponding spheres, in each case, are the elements of length one
and for n = 1 is the group of two elements Z2, for n = 2 is the unit circle S1, for n = 4 is the unit
sphere in R4, S3, and they are all groups with the induced multiplication. In each of these dimension
we have the corresponding torus, Zn = Z2× · · · × Z2, Tn = S1× . . .×S1 and Qn = S3× . . .×S3. In
each case, starting with a polyhedron, we can construct a space on which the tori act and the quotient
space in the original polyhedron. These manifolds are called standard models. The local action is
given in fact as the corresponding multiplication.

In each case, we start with a manifold on which the tori act (locally linearly) and they are ho-
motopy equivalent to the standard model, preserving the group action and we want to show that is
homeomorphic to the standard model. In all case, the process is similar. Let N be the manifold that
we study. First, we show that the action has the local properties of the standard model. Thus the
quotient space is a polyhedron P . Next, we construct the standard model from P . The final result
is consequence of two results: first that N is homeomorphic to the canonical model over P , which is
homeomorphic to the original standard model.

For n = 1, we have a much richer structure than those of finite groups. In this case, we have actions
of groups that are generated by reflections (Coxeter groups). The basic properties are given in [2].
The rigidity theorem is proved in [6]. In this case, we have to show that the elements that act as
reflections in the standard model, act as reflections on N .

For n = 2 we have the toric manifolds, which are the non-singular toric varieties and their topological
analogue, the quasitoric manifolds ([1], [3]). The result is given in [5]. To show that the action of
Tn on N is locally standard, we study the representation s of Tn. To show that N is homeomorphic
to the standard model of the action, we show that an element in the local Čech cohomology of the
quotient map vanishes.
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For the remaining case, we work along the lines of the Coxeter groups and quasitoric varieties. Let
Qn = (S3)n. We say that Qn acts on a manifold M4n locally regularly if, locally, the action is given
by (quaternionic) multiplication or conjugation on each coordinate. Then the quotient is a manifold
with corners. Conversely, starting with a manifold with corners and an appropriate function from its
faces to the conjugacy classes of subgroups of Qn, we can construct a locally regular (quoric) manifold.
Our main result is the following.
Theorem 1. (Rigidity of Quoric Manifolds). Let M4n be a closed locally regular quoric manifold
over a nice n-manifold with corners X and X is a homotopy polytope i.e. all the faces of X (and
X itself) are contractible manifolds with corners. Let N4n be a locally linear closed Qn-manifold
and f : N4n −→ M4n a Qn-equivariant homotopy equivalence. Then f is Qn-homotopic to a Qn-
homeomorphism.

The proof of the main theorem follows the methods of [6] and [5].
• We show that the action on Nn is locally regular. For this result, we first prove that Nn has the

same isotropy groups as Mn and f is an isovariant homotopy equivalence. Then we prove that the
action on Nn is locally regular. That is quite different from the torus case. The reason is that this
part depends on the representation theory of the underlying group. But Qn is not abelian and thus
its representation theory is more complicated that that of Tn. So, we need a more thorough analysis
in this case.

• Let Y be the quotient manifold with corners of the action. We prove that Nn is Qn-homeomorphic
with the standard model constructed from Y . For this, there is an obstruction theory analogous to
the torus case.

• The rest is standard. The map f induces a face preserving homotopy equivalence ϕ : Y −→ X.
Induction and standard surgery methods imply that ϕ is face homotopic to a face homeomorphism
ψ. The map ψ induces a Qn-homeomorphism g : Nn −→Mn that is homotopic to f .
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