Marek Golasiński (UWM in Olsztyn, Poland) *E-mail:* marekg@matman.uwm.edu.pl

Francisco Gómez Ruiz (Universidad de Málaga, España) *E-mail:* gomez_ruiz@uma.es

The octonions \mathbb{O} satisfy a weaker form of associativity. Namely, they are alternative and power associative only and are not as well known as complex numbers \mathbb{C} and the quaternions \mathbb{H} which are much more widely studied and used.

This talk studies: Stiefel and Grassmann varieties, and vector bundles over octonions \mathbb{O} .

STIEFEL MANIFOLDS. Let \mathbb{F} stand for \mathbb{R} , the reals, \mathbb{C} , the complex numbers or \mathbb{H} , the quaternions. Recall that the Stiefel manifold $V_{n,r}(\mathbb{F})$ for $r \leq n$ is the set of all orthonormal *r*-frames in \mathbb{F}^n which can be thought of as a set of $n \times k$ matrices by writing a *r*-frame as a matrix of *k* column vectors in \mathbb{F}^n . We then have

$$V_{n,r}(\mathbb{F}) = \left\{ A \in M_{n,r}(\mathbb{F}) : A^t A = I_r \right\}$$

and define

$$V_{n,r}(\mathbb{O}) = \left\{ A \in M_{n,r}(\mathbb{O}) : \bar{A}^t A = I_r \right\}.$$

Those yield $V_{n,r}(\mathbb{F})$ and $V_{n,r}(\mathbb{O})$ as algebraic varieties over \mathbb{R} (see [1, 3] for details).

Each $V_{n,r}(\mathbb{F})$ can be viewed as a homogeneous space:

$$V_{n,r}(\mathbb{F}) \cong \mathrm{U}(n,\mathbb{F})/\mathrm{U}(n-r,\mathbb{F}).$$

But, for $V_{n,r}(\mathbb{O})$ we have:

Proposition 1. (1) $V_{n,r}(\mathbb{O})$ is a compact smooth submanifold of $M_{n,r}(\mathbb{O})$ for any $r \leq n$.

(2) $V_{n,r}(\mathbb{O})$ is path-connected for any $r \leq n$ and the map $\pi : V_{n,r+1}(\mathbb{O}) \to V_{n,r}(\mathbb{O})$, given by $\pi(A|v) = A$, is a smooth fibre bundle.

GRASSMANN MANIFOLDS. Grassmann manifold $G_{n,r}(\mathbb{F})$ is a differentiable manifold that parameterizes the set of all *r*-dimensional linear subspaces of \mathbb{F}^n . Since the rank of an orthogonal projection operator equals its trace, we can identify

$$G_{n,r}(\mathbb{F}) = \left\{ A \in M_n(\mathbb{F}) : A = \bar{A}^t = A^2, \, \operatorname{tr}(A) = r \right\}$$

and define

$$G_{n,r}(\mathbb{O}) = \left\{ A \in M_n(\mathbb{O}) : A = \overline{A}^t = A^2, \operatorname{tr}(A) = r \right\}$$

Those yield $G_{n,r}(\mathbb{F})$ and $G_{n,r}(\mathbb{O})$ as algebraic varieties over \mathbb{R} (see [1, 3] for details).

Each $G_{n,r}(\mathbb{F})$ can be viewed as a homogeneous space:

$$G_{n,r}(\mathbb{F}) \cong \mathrm{U}(n,\mathbb{F})/\mathrm{U}(r,\mathbb{F}) \times \mathrm{U}(n-r,\mathbb{F}).$$

Furthermore, we have the principal U(r)-bundle

$$U(r, \mathbb{F}) \hookrightarrow V_{n,r}(\mathbb{F}) \to G_{n,r}(\mathbb{F})$$

for the Stiefel map $V_{n,r}(\mathbb{F}) \to G_{n,r}(\mathbb{F})$.

Due to the non-associativity of \mathbb{O} we do not have a Stiefel map $\pi : V_{n,r}(\mathbb{O}) \to G_{n,r}(\mathbb{O})$, but we may define a subset $V'_{n,r}(\mathbb{O}) \subseteq V_{n,r}(\mathbb{O})$ as follows: $A \in V'_{n,r}(\mathbb{O})$ if the set of all entries of A generate an associative subalgebra of \mathbb{O} . Then, we have a Stiefel map $\pi : V'_{n,r}(\mathbb{O}) \to G_{n,r}(\mathbb{O})$ given by $\pi(A) = A\bar{A}^t$. Similarly to $V'_{n,r}(\mathbb{O})$, we define $G'_{n,r}(\mathbb{O})$ as follows: $A \in G'_{n,r}(\mathbb{O})$ if all entries of A generate an associative subalgebra of \mathbb{O} . It is clear that the Stiefel map $\pi : V'_{n,r}(\mathbb{O}) \to G_{n,r}(\mathbb{O})$ yields a surjective map $\pi : V'_{n,r}(\mathbb{O}) \to G'_{n,r}(\mathbb{O})$. In particular, $G'_{n,r}(\mathbb{O})$ is piecewise-smooth path-connected.

VECTOR BUNDLES

By analogy with real, complex or quaterionic vector bundles, define an octonionic vector bundle of rank r over some space X as a continuous map

$$f: X \to G'_{-,r}(\mathbb{O}).$$

The following result holds by adapting proof of [1, Theorem 12.1.7] or [2, Theorem 2.5]:

Theorem 2. Any smooth map $X \to G'_{n,r}(\mathbb{O})$ with $r \leq n$ and X, a compact non-singular algebraic set, is homotopic to an entire rational map from X to $G'_{n,r}(\mathbb{O})$.

Then, we derive:

Corollary 3. Any smooth map $X \to G_{n,r}(\mathbb{O})$ with n = 2, 3 and r = 1 is homotopic to an entire rational map $X \to G_{n,r}(\mathbb{O})$. In particular, any continuous map $\mathbb{S}^n \to \mathbb{S}^8$ is homotopic to an entire rational map $\mathbb{S}^n \to \mathbb{S}^8$.

References

- J. Bochnak, M. Coste, and M.F. Roy, "Real Algebraic Geometry", Ergeb. Math. 36, Springer-Verlag, Berlin, Heidelberg, New York (1998).
- [2] J. Bochnak, W. Kucharz, Algebraic approximation of mappings into spheres, Michigan Math. J. 34 (1987), 119-125.
- [3] M. Golasiński and F. Gómez Ruiz, "Grassmann and Stiefel varieties over composition algebras", Springer-Verlag, RSME Springer Series 9, (2023).