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Example 2. If x = 1, x =
√
2/2, and x = 1/2 then from Theorem 1 we have
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where α = (1 +
√
5)/2 and δ =

√
2 + 1 are the golden and silver ratios, respectively.
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We will also establish connections with the Fibonacci and Lucas numbers. As usual, the Fibonacci
numbers Fn and the Lucas numbers Ln are defined, for n ∈ Z, through the recurrence Fn = Fn−1 +
Fn−2, n ≥ 2, with initial values F0 = 0, F1 = 1 and Ln = Ln−1 + Ln−2 with L0 = 2, L1 = 1. For
negative subscripts, we have F−n = (−1)n−1Fn and L−n = (−1)nLn.
Theorem 3. For any integer s,
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Note that since
(
2n
n

)
= (n + 1)Cn, where Cn are Catalan numbers, our results could be stated

equivalently in terms of the Catalan numbers. Similar series were studied recently in [2, 3, 4, 5].
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