Some series involving central binomial coefficients

Taras Gov

(Vasyl Stefanyk Precaprathian National University)

E-mail: taras.goy@pnu.edu.ua

Using Maclaurin expansion $\arcsin = \sum_{n=0}^{\infty} \frac{1}{2^{2n}} {2n \choose n} \frac{x^{2n+1}}{2n+1}$ and, for non-zero real variable x, formulas

$$\Re\left(\arcsin\left(x\sqrt{i}\right)\right) = \arctan\sqrt{\frac{\sqrt{1+x^4}-1}{x^2}}$$

$$\Im\left(\arcsin\left(x\sqrt{i}\right)\right) = \operatorname{arctanh}\sqrt{\frac{\sqrt{1+x^4}-1}{x^2}}$$

we obtain some series involving central binomial coefficients $\binom{2n}{n}$; see [1] for more details.

Theorem 1. For $|x| \leq 1$, we have

$$\sum_{n=0}^{\infty} \frac{(-1)^{\lfloor 3n/2 \rfloor}}{4^n (2n+1)} {2n \choose n} x^{2n+1} = \sqrt{2} \arctan\left(\frac{\sqrt{\sqrt{1+x^4}-1}}{x}\right),$$

$$\sum_{n=0}^{\infty} \frac{(-1)^{\lfloor 3n/2 \rfloor}}{4^n} {2n \choose n} x^{2n} = \frac{\sqrt{2\sqrt{1+x^4}-2}}{\sqrt{1+x^4} (x^2-1+\sqrt{1+x^4})},$$

$$\sum_{n=0}^{\infty} \frac{(-1)^{\lfloor 3n/2 \rfloor} n}{4^n} \binom{2n}{n} x^{2n} = \frac{x^2}{\sqrt{2}} \cdot \frac{3x^6 - 4x^4 + 5x^2 - 2 + (3x^4 - 5x^2 + 2)\sqrt{1 + x^4}}{(\sqrt{1 + x^4} + x^2 - 1)^2 \sqrt{(1 + x^4)^3} \sqrt{\sqrt{1 + x^4} - 1}}.$$

Example 2. If x = 1, $x = \sqrt{2}/2$, and x = 1/2 then from Theorem 1 we have

$$\begin{split} \sum_{n=0}^{\infty} \frac{(-1)^{\lfloor 3n/2 \rfloor}}{4^n (2n+1)} \binom{2n}{n} &= \sqrt{2} \operatorname{arccot} \sqrt{\delta}, \qquad \sum_{n=0}^{\infty} \frac{(-1)^{\lfloor 3n/2 \rfloor}}{4^n} \binom{2n}{n} &= \frac{1}{\sqrt{2\delta}}, \\ \sum_{n=0}^{\infty} \frac{(-1)^{\lfloor 3n/2 \rfloor} n}{4^n} \binom{2n}{n} &= -\frac{\sqrt{\delta}}{4}; \\ \sum_{n=0}^{\infty} \frac{(-1)^{\lfloor 3n/2 \rfloor}}{8^n (2n+1)} \binom{2n}{n} &= 2 \operatorname{arccot} \left(\alpha \sqrt{\alpha}\right), \qquad \sum_{n=0}^{\infty} \frac{(-1)^{\lfloor 3n/2 \rfloor}}{8^n} \binom{2n}{n} &= \frac{2}{\sqrt{5\alpha}}, \\ \sum_{n=0}^{\infty} \frac{(-1)^{\lfloor 3n/2 \rfloor} n}{8^n} \binom{2n}{n} &= -\frac{\sqrt{5}}{25} \alpha^2 \sqrt{\alpha}; \\ \sum_{n=0}^{\infty} \frac{(-1)^{\lfloor 3n/2 \rfloor} n}{16^n (2n+1)} \binom{2n}{n} &= 2\sqrt{2} \operatorname{arccot} \sqrt{\sqrt{17}+4}, \qquad \sum_{n=0}^{\infty} \frac{(-1)^{\lfloor 3n/2 \rfloor} n}{16^n} \binom{2n}{n} &= \frac{2}{\sqrt{17}} \sqrt{\sqrt{17}-1}, \\ \sum_{n=0}^{\infty} \frac{(-1)^{\lfloor 3n/2 \rfloor} n}{16^n} \binom{2n}{n} &= -\frac{1}{17\sqrt{17}} \sqrt{17\sqrt{17}+47}, \end{split}$$

where $\alpha = (1 + \sqrt{5})/2$ and $\delta = \sqrt{2} + 1$ are the golden and silver ratios, respectively.

2 T. Goy

We will also establish connections with the Fibonacci and Lucas numbers. As usual, the Fibonacci numbers F_n and the Lucas numbers L_n are defined, for $n \in \mathbb{Z}$, through the recurrence $F_n = F_{n-1} + F_{n-2}$, $n \geq 2$, with initial values $F_0 = 0$, $F_1 = 1$ and $L_n = L_{n-1} + L_{n-2}$ with $L_0 = 2$, $L_1 = 1$. For negative subscripts, we have $F_{-n} = (-1)^{n-1}F_n$ and $L_{-n} = (-1)^nL_n$.

Theorem 3. For any integer s,

$$\sum_{n=0}^{\infty} \frac{(-1)^{\lfloor 3n/2 \rfloor}}{16^{n}(2n+1)} {2n \choose n} F_{2n+s} = -\frac{2\sqrt{10}}{5} \left(\alpha^{s-1} \arctan C_{1} - \beta^{s-1} \arctan D_{1}\right),$$

$$\sum_{n=0}^{\infty} \frac{(-1)^{\lfloor 3n/2 \rfloor}}{16^{n}(2n+1)} {2n \choose n} L_{2n+s} = -2\sqrt{2} \left(\alpha^{s-1} \arctan C_{1} + \beta^{s-1} \arctan D_{1}\right);$$

$$\sum_{n=0}^{\infty} \frac{(-1)^{\lfloor 3n/2 \rfloor}}{16^{n}} {2n \choose n} F_{2n+s} = \frac{8\sqrt{205}}{615} \left(\alpha^{s} C_{2} + \beta^{s} D_{2}\right),$$

$$\sum_{n=0}^{\infty} \frac{(-1)^{\lfloor 3n/2 \rfloor}}{16^{n}} {2n \choose n} L_{2n+s} = \frac{40\sqrt{41}}{615} \left(\alpha^{s} C_{2} - \beta^{s} D_{2}\right);$$

$$\sum_{n=0}^{\infty} (-1)^{\lfloor 3n/2 \rfloor} \frac{n}{16^{n}} {2n \choose n} F_{2n+s} = \frac{\sqrt{205}}{226935} \left(\alpha^{s+2} C_{3} - \beta^{s+2} D_{3}\right),$$

$$\sum_{n=0}^{\infty} (-1)^{\lfloor 3n/2 \rfloor} \frac{n}{16^{n}} {2n \choose n} L_{2n+s} = \frac{\sqrt{41}}{45387} \left(\alpha^{s+2} C_{3} + \beta^{s+2} D_{3}\right),$$

where

$$C_1 = \beta \sqrt{\frac{\sqrt{78 + 6\sqrt{5} - 8}}{2}}, \quad D_1 = \alpha \sqrt{\frac{\sqrt{78 - 6\sqrt{5} - 8}}{2}},$$

$$C_2 = \frac{\sqrt{\sqrt{78 + 6\sqrt{5}} - 8\sqrt{78 - 6\sqrt{5}}}}{-5 + \sqrt{5} + \sqrt{78 + 6\sqrt{5}}}, \quad D_2 = \frac{\sqrt{\sqrt{78 - 6\sqrt{5}} - 8\sqrt{78 + 6\sqrt{5}}}}{5 + \sqrt{5} - \sqrt{78 - 6\sqrt{5}}},$$

$$C_3 = \frac{\left(148 - 112\sqrt{5} - \sqrt{78 + 6\sqrt{5}}\right)(25 - 11\sqrt{5})\right)\sqrt{(78 - 6\sqrt{5})^3}}{\left(-5 + \sqrt{5} + \sqrt{78 + 6\sqrt{5}}\right)^2\sqrt{\sqrt{78 + 6\sqrt{5}} - 8}},$$

$$D_3 = \frac{\left(148 + 112\sqrt{5} - \sqrt{78 - 6\sqrt{5}}\right)(25 + 11\sqrt{5})\sqrt{(78 + 6\sqrt{5})^3}}{\left(5 + \sqrt{5} - \sqrt{78 + 6\sqrt{5}}\right)^2\sqrt{\sqrt{78 - 6\sqrt{5}} - 8}}.$$

Note that since $\binom{2n}{n} = (n+1)C_n$, where C_n are Catalan numbers, our results could be stated equivalently in terms of the Catalan numbers. Similar series were studied recently in [2, 3, 4, 5].

References

- [1] K. Adegoke, R. Frontczak and T. Goy. Evaluation of some alternating series involving the binomial coefficients C(4n, 2n). Preprint arXiv:2404.05770v1 [math.NT], 2024.
- [2] K. Adegoke, R. Frontczak and T. Goy. Fibonacci-Catalan series. Integers, 22: #A110, 2022.
- [3] K. Adegoke, R. Frontczak and T. Goy. On a family of infinite series with reciprocal Catalan numbers. *Axioms*, 11: Art. 165, 2022.
- [4] N. Bhandari. Infinite series associated with the ratio and product of central binomial coefficients. *Journal of Integer Sequences*, 25: Art. 22.6.5, 2022.
- [5] H. Chen. Interesting Ramanujan-like series associated with powers of central binomial coefficients. *Journal of Integer Sequences*, 25: Art. 22.1.8, 2022.