On non-topologizable semigroups

Oleg Gutik

(Ivan Franko National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine) E-mail: oleg.gutik@lnu.edu.ua, ogutik@gmail.com

In this paper we shall follow the semigroup terminology of [1, 2, 3, 4].

Throughout these abstract we always assume that all topological spaces involved are Hausdorff—unless explicitly stated otherwise.

Definition 1. Let X, Y and Z be topological spaces. A map $f: X \times Y \to Z$, $(x,y) \mapsto f(x,y)$, is called

- (i) right [left] continuous if it is continuous in the right [left] variable; i.e., for every fixed $x_0 \in X$ [$y_0 \in Y$] the map $Y \to Z$, $y \mapsto f(x_0, y)$ [$X \to Z$, $x \mapsto f(x, y_0)$] is continuous;
- (ii) separately continuous if it is both left and right continuous;
- (iii) jointly continuous if it is continuous as a map between the product space $X \times Y$ and the space Z.

Definition 2. Let S be a non-void topological space which is provided with an associative multiplication (a semigroup operation) $\mu: S \times S \to S$, $(x,y) \mapsto \mu(x,y) = xy$. Then the pair (S,μ) is called

- (i) a right topological semigroup if the map μ is right continuous, i.e., all interior left shifts $\lambda_s \colon S \to S$, $x \mapsto sx$, are continuous maps, $s \in S$;
- (ii) a left topological semigroup if the map μ is left continuous, i.e., all interior right shifts $\rho_s \colon S \to S$, $x \mapsto xs$, are continuous maps, $s \in S$;
- (iii) a semitopological semigroup if the map μ is separately continuous;
- (iv) a topological semigroup if the map μ is jointly continuous.

We usually omit the reference to μ and write simply S instead of (S, μ) . It goes without saying that every topological semigroup is also semitopological and every semitopological semigroup is both a right and left topological semigroup.

A topology τ on a semigroup S is called:

- a semigroup topology if (S, τ) is a topological semigroup;
- a shift-continuous topology if (S, τ) is a semitopological semigroup;
- an left-continuous topology if (S, τ) is a left topological semigroup;
- an right-continuous topology if (S, τ) is a right topological semigroup.

The bicyclic monoid $\mathscr{C}(p,q)$ is the semigroup with the identity 1 generated by two elements p and q subjected only to the condition pq = 1. The semigroup operation on $\mathscr{C}(p,q)$ is determined as follows:

$$q^{k}p^{l} \cdot q^{m}p^{n} = \begin{cases} q^{k-l+m}p^{n}, & \text{if } l < m; \\ q^{k}p^{n}, & \text{if } l = m; \\ q^{k}p^{l-m+n}, & \text{if } l > m. \end{cases}$$

We define the following subsets of the bicyclic monoid

$$\mathscr{C}_{+}(p,q) = \left\{ q^{i}p^{j} \in \mathscr{C}(p,q) \colon i \leqslant j \right\} \quad \text{and} \quad \mathscr{C}_{-}(p,q) = \left\{ q^{i}p^{j} \in \mathscr{C}(p,q) \colon i \geqslant j \right\}.$$

Proposition 3. $\mathscr{C}_{+}(p,q)$ and $\mathscr{C}_{-}(p,q)$ are anti-isomorphic submonoids of $\mathscr{C}(p,q)$.

Proposition 4. Green's relations \mathcal{R} , \mathcal{L} , \mathcal{J} , \mathcal{D} and \mathcal{H} on monoids $\mathcal{C}_+(p,q)$ and $\mathcal{C}_-(p,q)$ coincide with the equality relation.

2 O. Gutik

Theorem 5. Every Hausdorff left-continuous topology on the monoid $\mathcal{C}_+(p,q)$ is discrete.

Theorem 6. Every Hausdorff right-continuous topology on the monoid $\mathscr{C}_{-}(p,q)$ is discrete.

Example 7. There exists a non-discrete locally compact semigroup T_1 -topology τ on the monoid $\mathscr{C}_+(p,q)$.

Example 8. There exists a non-discrete compact shift-continuous T_1 -topology τ on the monoid $\mathscr{C}_+(p,q)$.

Proposition 9. If the monoid $\mathscr{C}_+(p,q)$ is a dense subsemigroup of a Hausdorff semitopological monoid S and $I = S \setminus \mathscr{C}_+(p,q) \neq \varnothing$ then I is a closed two-sided ideal of the semigroup S.

Example 10. There exists a compact Hausdorff topological monoid S which contains the monoid $\mathscr{C}_{+}(p,q)$ as a dense submonoid.

Also, we discuss under which conditions a shift-continuous T_1 -topology τ on the monoid $\mathscr{C}_+(p,q)$ is discrete.

References

- [1] J. H. Carruth, J. A. Hildebrant, and R. J. Koch, *The theory of topological semigroups*, Vol. I, Marcel Dekker, Inc., New York and Basel, 1983.
- [2] A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Vol. I, Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.
- [3] R. Engelking, General topology, 2nd ed., Heldermann, Berlin, 1989.
- [4] W. Ruppert, Compact semitopological semigroups: an intrinsic theory, Lect. Notes Math., 1079, Springer, Berlin, 1984.