ON SEMI-SYMMETRIC (α, β, γ) -INVERSE QUASIGROUP

Richard Ilemobade

(Obafemi Awolowo University, Ile Ife, Nigeria) *E-mail:* richardilemobade@gmail.com

Temitope Gbolahan Jaiyeola

(University of Lagos, Akoka, Nigeria and Obafemi Awolowo University, Ile Ife, Nigeria) *E-mail:* tgjaiyeola@unilag.edu.ng, tjayeola@oauife.edu.ng

Quasigroups and loops are generalizations of groups (see[[2](#page-1-0), [9](#page-1-1), [10\]](#page-1-2)).

Definition 1. Let (Q, \cdot) be a system of non-empty set Q and a binary operation (\cdot) . (Q, \cdot) will be called a quasigroup if for $a, b \in Q$, the equations $a \cdot x = b$ and $y \cdot a = b$ have unique solutions $(x, y) \in Q$ $Q \times Q$.

Definition 2. A quasigroup (Q, \cdot) , in which there is a unique element $\mu \in Q$, such that $x \cdot \mu = x =$ $\mu \cdot x \quad \forall x \in Q$, is called a loop. The element μ is called the identity element in *Q*.

In associative algebraic systems, the notion of an inverse element or property holds significance only when the system possesses a neutral element, as seen in groups, for instance. Nevertheless, in quasigroups, the inverse property can be meaningfully established even when there is no neutral element present.

Definition 3. A quasigroup (Q, \cdot) will be said to have the inverse property if there are permutations on Q: $J_{\lambda}: x \longrightarrow x^{\lambda}$ and $J_{\rho}: x \longrightarrow x^{\rho}$ such that $x^{\lambda}(xy) = y$ and $(yx)x^{\rho} = y$ for $x, y \in Q$.

Certain varieties of quasigroups or loops lack the inverse property, yet exhibit characteristics that can be viewed as variations of the inverse property.

Definition 4. A quasigroup (Q, \cdot) has the cross-inverse-property (and is called a CIP quasigroup) if there exists a permutation $J: Q \to Q$; $x \mapsto xJ$ such that either of the following holds: $(x \cdot y) \cdot xJ = y$ or $xJ \cdot (y \cdot x) = y$ for all $x, y \in Q$. If (Q, \cdot) is a loop with the neutral element μ , then $J = J_{\lambda}$ or $J = J_{\rho}$ and we have a CIP loop.

This class of quasigroup and loop, and their generalizations have been studied and found to be applicable to cryptography (see[[7](#page-1-3), [3\]](#page-1-4)). Among such generalizations is the *m*-inverse quasigroup and loop(see $[4]$ $[4]$ $[4]$).

Definition 5. If there is a permutation *J* of elements of a quasigroup (Q, \cdot) such that $\forall x, y \in Q$ $(x \cdot y)J^m \cdot xJ^{m+1} = yJ^m$, where *m* is an integer, then (Q, \cdot) is called an *m*-inverse quasigroup. In the special case (Q, \cdot) is a loop with neutral element μ and $x \cdot xJ = \mu$ for all $x \in Q$, then we have an *m*-inverse loop.

Anotherof such is the (r, s, t) -inverse quasigroup (see [[1](#page-1-6), [5,](#page-1-7) [6](#page-1-8)]) which (α, β, γ) -inverse quasigroup generalizes.

Definition 6. If there is a permutation *J* of elements of a quasigroup (Q, \cdot) such that $\forall x, y \in Q$ $(x \cdot y)J^r \cdot xJ^s = yJ^t$, where *r*, *s* and *t* are integers, then (Q, \cdot) is called an (r, s, t) -inverse quasigroup. If in addition, (Q, \cdot) is a loop and the permutation *J* is such that $x \cdot xJ = \mu$, where μ is the neutral element in Q , then (Q, \cdot) is an (r, s, t) -inverse loop.

A quasigroup (Q, \cdot) will be called an (α, β, γ) -inverse quasigroup, if there exist fixed permutations *α*, *β* and γ of *Q*, such that $(x \cdot y)\alpha \cdot x\beta = y\gamma \quad \forall (x, y) \in Q \times Q$.

Conjecture 7. *A quasigroup can have more than one triple of bijections* (α, β, γ) *, for which the* (*α, β, γ*)*-inverse property holds.*

In this work, examples were given to illustrate that a quasigroup can have more than one (α, β, γ) inverse property.

Definition 8. Let (Q, \cdot) be a quasigroup. Define the set Δ_Q as follows:

 $\Delta_Q := {\omega = \langle \alpha, \beta, \gamma \rangle : (x \cdot y) \alpha \cdot x \beta = y \gamma, \ x, y \in Q}$

where α , β , and γ are permutations of *Q*.

Definition 9. A quasigroup (Q, \cdot) is said to be semi-symmetric if it satisfies the identity $(x \cdot y) \cdot x = y$ for all $x, y \in Q$.

For non-empty set Δ_Q of quasigroup (Q, \cdot) , it was shown that if the semi-symmetry law holds in (Q , ·), it induces a binary operation on Δ_Q for which Δ_Q is a group.

Theorem 10. Let (Q, \cdot) be an (α, β, γ) -inverse quasigroup. If (Q, \cdot) is semi-symmetric, then there *exists a binary operation* \otimes *on* Δ_Q *, such that* (Δ_Q, \otimes) *is a group.*

Conjecture 11. *There is relationship between* Δ_Q *and the autotopism group* $ATP(Q)$ *, for a quasigroup* (Q, \cdot) *.*

Interestingly, this relation is actually an isomorphism between *∆^Q* and the autotopism group of $(Q, \cdot).$

Theorem 12. For an (α, β, γ) -inverse quasigroup (Q, \cdot) that is semi-symmetric, (Δ_Q, \otimes) and $ATP(Q)$ *are isomorphic i.e* $\Delta_Q \cong ATP(Q)$ *.*

REFERENCES

- [1] R. Ilemobade, O. George and T.G. Jaiyeola. On the universality and isotopy-isomorphy of (*r, s, t*)-inverse quasigroups and loops with applications to cryptography. *Quasigroup and Related Systems*, 31: 53–64, 2023.
- [2] T.G. Jaiyeola. *A study of new concepts in smarandache quasigroups and loops*, ProQuest Information and Learning(ILQ), Ann Arbor, USA, 2009.
- [3] A. D. Keedwell. Crossed-inverse quasigroups with long inverse cycles and applications to cryptography. *Australas. J. Combin.*, 20: 241–-250, 1999.
- [4] A. D. Keedwell and V. A. Shcherbacov. On m-inverse loops and quasigroups with a long inverse cycle. *Australas. J. Combin.*, 26: 99–-119, 2002.
- [5] A. D. Keedwell and V. A. Shcherbacov. Construction and properties of (*r, s, t*)-inverse quasigroups I. *Discrete Math.*, 266: 275–-291, 2003.
- [6] A. D. Keedwell and V. A. Shcherbacov. Construction and properties of (*r, s, t*)-inverse quasigroups II. *Discrete Math.*, 288: 61-–71, 2004.
- [7] A.D. Keedwell and V.A. Shcherbacov. Quasigroups with an inverse property and generalized parastrophic identities. *Quasigroups and Related Systems*, 13: 109–124, 2005.
- [8] Y.T. Oyebo, T. G. Jaiyéọlá and J. O. Adeniran. A study of the holomorphy of (*r, s, t*)-inverse loops, *Journal of Discrete Mathematical Sciences & Cryptography*, 26(1): 67–-86, 2023. https://doi.org/10.1080/09720529.2021.1885810
- [9] V. A. Shcherbacov. *Elements of quasigroup theory and applications*, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2017.
- [10] A.R.T. Solarin, J.O. Adeniran, T.G. Jaiyeola, A.O. Isere and Y.T. Oyebo. *Some varieties of loops (Bol-Moufang and non-Bol-Moufang types)*. In: Hounkonnou, M.N., Mitrović, M., Abbas, M., Khan, M. (eds) Algebra without Borders – Classical and Constructive Nonassociative Algebraic Structures. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham. 2023. https://doi.org/10.1007/978-3-031-39334-1_3