About Rolewicz theorem on inversion of continuous bijection between F-spaces

Olena Karlova

(Yurii Fedkovych Chernivtsi National University, Chernivtsi, Ukraine) *E-mail:* o.karlova@chnu.edu.ua

Well-known result of Stefan Banach states that if X and Y are F-spaces and $f : X \to Y$ is a bijective additive continuous mapping, then the inverse mapping $f^{-1} : Y \to X$ is continuous. In general case the inverse mapping can be everywhere discontinuous.

In article [1] Stefan Rolewicz presented sufficient conditions on spaces X and Y under which the inverse mapping to a continuous bijection belongs to the first Baire class.

Theorem 1 (Rolewicz, 1958). Let X, Y be F-spaces and let X be separable locally compact. Then for every continuous bijection $f: X \to Y$ the inverse mapping $f^{-1}: Y \to X$ is Baire 1.

The aim of this talk is a discussion of possible generalizations of the above mentioned result of Rolewicz on spaces X which are not linear. In order to do this we introduce a notion of weak Rolewicz space and prove the auxiliary fact about uniform limit of Baire 1 functions which is of self contained interest and extends corresponding results from [2].

Definition 2. A metric space (X, d) is called a *weak Rolewicz space*, if there exist C > 0, a sequence $(\varepsilon_n)_{n=1}^{\infty}$ of positive reals which tends to zero and a sequence $(R_n)_{n=1}^{\infty}$ of functions $R_n : X \times X \to X$ such that for all $x, y \in X$

(1) if $d(x, y) \leq \varepsilon_n$, then $R_n(x, y) = x$,

(2) $d(R_n(x,y),y) \leq C \cdot \varepsilon_n$ for $n = 1, 2, \ldots$

Every convex subset of a metric vector space is an example of a weak Rolewicz space. Moreover, there are zero dimensional examples of Rolewicz spaces.

Proposition 3. If Y is a weak Rolewicz space, then a uniform limit $f : X \to Y$ of a sequence of Baire 1 functions $f_n : X \to Y$ belongs to the first Baire class.

The next theorem is the main result of the talk.

Theorem 4. Let X, Y be metric spaces and X is locally compact weak Rolewicz space. Then for every continuous bijection $f: X \to Y$ the inverse mapping $f^{-1}: Y \to X$ is Baire 1.

References

- [1] Stefan Rolewicz. On inversion of non-linear transformations, Studia Mathematica, 17: 79–83, 1958.
- [2] Olena Karlova, Mykhaylo Lukan, R-spaces and uniform limit of sequences of the first Baire class, Bukovinian Mathematical Journal, 7 (2): 39–47, 2019.