ON BOUNDARY CONTROLLABILITY PROBLEMS FOR THE HEAT EQUATION WITH VARIABLE COEFFICIENTS ON A HALF-AXIS

Larissa Fardigola

(B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine;

V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine)

E-mail: fardigola@ilt.kharkov.ua

Kateryna Khalina

(B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine) *E-mail:* khalina@ilt.kharkov.ua

Consider the control system for the heat equation on a half-axis:

$$w_t = \frac{1}{\rho} \left(k w_x \right)_x + \gamma w, \qquad \qquad x \in \mathbb{R}_+, \ t \in (0, T), \tag{1}$$

$$\left(\sqrt{k/\rho}w_x\right)\Big|_{x=0} = u, \qquad t \in (0,T), \tag{2}$$

$$w(\cdot, 0) = w^0, \qquad \qquad x \in \mathbb{R}_+, \tag{3}$$

where $\mathbb{R}_+ = (0, +\infty)$; T is a positive constant; ρ, k, γ, w^0 are given functions; $u \in L^{\infty}(0, T)$ is a control. We assume ρ and k are positive on $[0, +\infty)$, $\rho, k \in C^1[0, +\infty)$, $(\rho k) \in C^2[0, +\infty)$, $(\rho k)'(0) = 0$, and

$$\sigma(x) = \int_0^x \sqrt{\rho(\mu)/k(\mu)} \, d\mu \to +\infty \quad \text{as } x \to +\infty$$

Moreover, we assume

$$(Q_2(\rho,k)-\gamma) \in L^{\infty}(0,+\infty) \bigcap C^1[0,+\infty) \quad \text{and} \quad \sigma\sqrt{\rho/k} (Q_2(\rho,k)-\gamma) \in L^1(0,+\infty),$$

where $Q_2(\rho, k) = \sqrt{k/\rho} (Q_1(\rho, k))' + (Q_1(\rho, k))^2, Q_1(\rho, k) = \sqrt{k/\rho} (k\rho)'/(4k\rho).$

Control system (1)–(3) is considered in modified Sobolev spaces. Let $\varphi \in L^2_{loc}(\mathbb{R}_+)$. We define the modified derivative $\mathbb{D}_{\rho k}$ by the rule

$$\mathbb{D}_{\rho k}\varphi = \sqrt{k/\rho}\varphi' + Q_1(\rho, k)\varphi$$

If, in addition, $\mathbb{D}_{\rho k} \varphi \in L^2_{\text{loc}}(\mathbb{R}_+)$ and $(\mathbb{D}_{\rho k} \varphi)' \in L^2_{\text{loc}}(\mathbb{R}_+)$ we can consider $\mathbb{D}^2_{\rho k} \varphi$:

$$\mathbb{D}_{\rho k}^{2} \varphi = \frac{1}{\rho} (k \varphi')' + Q_{2}(\rho, k) \varphi.$$

Obviously, $\mathbb{D}_{\rho k}^{m} \varphi = \varphi^{(m)}$ if $\rho = k = 1, m = 0, 1$. Denote

$$L^2_{\rho}(\mathbb{R}_+) = \{ f \in L^2_{\text{loc}}(\mathbb{R}_+) \mid \sqrt{\rho} f \in L^2(\mathbb{R}_+) \}$$

with the norm $\|f\|_{L^{2}_{\rho}(\mathbb{R}_{+})} = \|\sqrt{\rho}f\|_{L^{2}(\mathbb{R}_{+})}, f \in L^{2}_{\rho}(\mathbb{R}_{+}).$

Now consider the modified Sobolev spaces

$$\overset{\circ}{\mathbb{H}}{}^{0} = L^{2}_{\rho}(\mathbb{R}_{+}), \quad \overset{\circ}{\mathbb{H}}{}^{1} = \{\varphi \in L^{2}_{\rho}(\mathbb{R}_{+}) \mid \mathbb{D}_{\rho k}\varphi \in L^{2}_{\rho}(\mathbb{R}_{+}) \text{ and } \varphi(0^{+}) = 0\}$$

with the norm

$$\llbracket \varphi \rrbracket^p = \left(\sum_{m=0}^p \binom{p}{m} \left(\lVert \mathbb{D}_{\rho k}^m \varphi \rVert_{L^2_{\rho}(\mathbb{R}_+)} \right)^2 \right)^{1/2}, \quad \varphi \in \overset{\circ}{\mathbb{H}}^p, \quad p = 0, 1,$$

and the dual space $\mathring{\mathbb{H}}^{-p} = \left(\mathring{\mathbb{H}}^{p}\right)^{*}$, p = 0, 1, with the norm associated with the strong topology of the adjoint space.

In control system (1)–(3), we suppose $\left(\frac{d}{dt}\right)^p w: [0,T] \to \overset{\circ}{\mathbb{H}^{1-2p}}, p = 0, 1; w^0 \in \overset{\circ}{\mathbb{H}^1}.$

Let T > 0, $w^0 \in \overset{\circ}{\mathbb{H}}^1$. By $\mathcal{R}_T(w^0)$, denote the set of all states $w^T \in \overset{\circ}{\mathbb{H}}^1$ for which there exists a control $u \in L^{\infty}(0,T)$ such that there exists a unique solution w to (1)–(3) and $w(\cdot,T) = w^T$.

Definition 1. A state $w^0 \in \overset{\circ}{\mathbb{H}}^1$ is said to be *null-controllable* with respect to system (1)–(3) in a given time T > 0 if $0 \in \mathcal{R}_T(w^0)$.

Definition 2. A state $w^0 \in \overset{\circ}{\mathbb{H}}^1$ is said to be *approximately controllable* to a state $w^T \in \overset{\circ}{\mathbb{H}}^1$ with respect to system (1)–(3) in a given time T > 0 if $w^T \in \overline{\mathcal{R}_T(w^0)}$, where the closure is considered in the space $\overset{\circ}{\mathbb{H}}^1$.

Consider also the control system with the simplest heat operator (the case $\rho = k = 1, \gamma = 0$):

$$z_t = z_{yy}, \qquad \qquad y \in \mathbb{R}_+, \ t \in (0,T), \tag{4}$$

$$z_y(0,\cdot) = v, \qquad t \in (0,T), \tag{5}$$

$$z(\cdot, 0) = z^0, \qquad \qquad y \in \mathbb{R}_+, \tag{6}$$

where $v \in L^{\infty}(0,T)$ is a control, $\left(\frac{d}{dt}\right)^m z : [0,T] \to H^{1-2m}$, $m = 0, 1, z^0 \in H^1$. Here H^p , p = -1, 0, 1, are the Sobolev spaces.

Controllability problems for system (4)-(6) were investigated in [1].

To study controllability problems for system (1)–(3), we use the transformation operator $\widehat{\mathbb{T}} : H^{-1} \to \mathring{\mathbb{H}}^{-1}$. It was introduced and studied in [2]. In particular, it has been proved therein that $\widehat{\mathbb{T}}$ is a continuous one-to-one mapping between the spaces H^p and $\mathring{\mathbb{H}}^p$, p = -1, 0, 1.

In the present talk, we prove that the transformation operator $\widehat{\mathbb{T}}$ is one-to-one mapping between the sets of the solutions to system (4)–(6) and to system (1)–(3). The application of the operator $\widehat{\mathbb{T}}$ allows us to conclude that the control system (1)–(3) replicates the controllability properties of the control system (4)–(6) and vice versa. A relation between controls u and v is also found. Thus, using obtained results for control system (4)–(6), we obtain the following main results for control system (1)–(3).

Theorem 3. If a state $w^0 \in \overset{\circ}{\mathbb{H}}^1$ is null-controllable with respect to system (1)–(3) in a time T > 0, then $w^0 = 0$.

Theorem 4. Each state $w^0 \in \overset{\circ}{\mathbb{H}}^1$ is approximately controllable to any target state $w^T \in \overset{\circ}{\mathbb{H}}^1$ with respect to system (1)–(3) in a given time T > 0.

All obtained results have been published in [3].

References

^[1] Larissa Fardigola and Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. *Math. Control Relat. Fields*, 11(1): 211–236, 2021.

 ^[2] L.V. Fardigola. Transformation operators and modified Sobolev spaces in controllability problems on a half-axis. J. Math. Phys. Anal. Geom., 12(1): 17–47, 2016.

^[3] Larissa Fardigola and Kateryna Khalina. Controllability problems for the heat equation with variable coefficients on a half-axis controlled by the Neumann boundary condition. J. Math. Phys. Anal. Geom., 19(3): 616–641, 2023.