GROUP CLASSIFICATION OF KOLMOGOROV BACKWARD EQUATIONS WITH POWER DIFFUSIVITY

Serhii D. Koval

(Memorial University of Newfoundland, Canada and Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine) *E-mail:* koval.srh@imath.kiev.ua

Roman O. Popovych (Silesian University in Opava, Czech Republic and Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine) *E-mail:* rop@imath.kiev.ua

We carry out the complete group classification of the class \mathcal{F} of Kolmogorov backward equations with power diffusivity

$$\mathcal{F}_{\alpha\beta}: \ u_t + xu_y = |x - \alpha|^\beta u_{xx},$$

where α and β are arbitrary real parameters, by solving the same problem for the class \mathcal{F}' of the equations of the form

$$\mathcal{F}_{\beta}': \quad u_t + xu_y = |x|^{\beta} u_{xx},$$

with β remains to be the only arbitrary element in the class \mathcal{F}' . Using the modified version of the direct method, we compute the equivalence groupoids $\mathcal{G}_{\mathcal{F}}^{\sim}$ and $\mathcal{G}_{\mathcal{F}'}^{\sim}$ of the classes \mathcal{F} and \mathcal{F}' , respectively, and consequently show that the class \mathcal{F}' is semi-normalized in the usual sense. The modification of the direct method is based on embedding both the classes \mathcal{F} and \mathcal{F}' into the class $\bar{\mathcal{F}}$ of ultraparabolic (1+2)-dimensional Fokker–Planck equations of the form

$$u_t + B(t, x, y)u_y = A^2(t, x, y)u_{xx} + A^1(t, x, y)u_x + A^0(t, x, y)u + C(t, x, y),$$

where the tuple $\bar{\theta} := (B, A^2, A^1, A^0, C)$ of arbitrary elements of the class $\bar{\mathcal{F}}$ runs through the solution set of the system of the inequalities $A^2 \neq 0$ and $B_x \neq 0$ with no restrictions on A^0 , A^1 and C. The equivalence groupoid of the class $\bar{\mathcal{F}}$ was described in [1, 2] via presenting the equivalence group of this class and stating that it is normalized, see [3] for required notions, results and further references. We use the known determining equations for admissible transformations within the superclass $\bar{\mathcal{F}}$ as the known principal constraints for admissible transformations within the classes \mathcal{F} and \mathcal{F}' . After explicitly constructing the groupoids $\mathcal{G}_{\mathcal{F}}^{\sim}$ and $\mathcal{G}_{\mathcal{F}'}^{\sim}$, it is easy to show that the group classification of the class \mathcal{F} reduces to that of the class \mathcal{F}' .

The class \mathcal{F}' admits a distinguished discrete equivalence transformation

$$\mathscr{J}: \quad \tilde{t} = y \operatorname{sgn} x, \quad \tilde{x} = \frac{1}{x}, \quad \tilde{y} = t \operatorname{sgn} x, \quad \tilde{u} = \frac{u}{x}, \quad \tilde{\beta} = 5 - \beta,$$

which turns out to be the only point equivalence transformation essential for carrying out the group classification of this class modulo the $\mathcal{G}_{\mathcal{F}'}^{\sim}$ -equivalence.

The following chain of assertions provides the complete solutions to the group classification problems for the classes \mathcal{F} and \mathcal{F}' .

Theorem 1. (i) The point transformations $\mathscr{S}(c_1)$: $(\tilde{t}, \tilde{x}, \tilde{y}, \tilde{u}, \tilde{\beta}, \tilde{\alpha}) = (t, x + c_1, y + c_1t, u, \beta, \alpha + c_1)$ where c_1 is arbitrary constant, constitute a one-parameter group of equivalence transformations of the class \mathcal{F} .

(ii) The wide family of admissible transformations $S_{\alpha\beta} := ((\alpha, \beta), \pi_* \mathscr{S}(-\alpha), (0, \beta))$ of the class \mathcal{F} from the action groupoid of its equivalence group maps this class onto the class \mathcal{F}' interpreted as a subclass of \mathcal{F} .

(iii) The point transformation \mathcal{J} is a (discrete) equivalence transformation of the class \mathcal{F}' .

(iv) The class \mathcal{F}' is semi-normalized with respect to the discrete equivalence subgroup generated by \mathscr{J} . In other words, the equivalence groupoid $\mathcal{G}_{\mathcal{F}'}^{\sim}$ of \mathcal{F}' is the Frobenius product of the action groupoid of this subgroup and the fundamental equivalence groupoid $\mathcal{G}_{\mathcal{F}'}^{\mathrm{f}}$ of \mathcal{F}' .

Corollary 2. (i) Different equations \mathcal{F}'_{β} and $\mathcal{F}'_{\tilde{\beta}}$ are similar with respect to point transformations if and only if $\beta + \tilde{\beta} = 5$.

(ii) Equations $\mathcal{F}_{\alpha\beta}$ and $\mathcal{F}_{\tilde{\alpha}\tilde{\beta}}$ are similar with respect to point transformations if and only if either $\tilde{\beta} = \beta$ or $\beta + \tilde{\beta} = 5$.

(iii) The equivalence groupoid $\mathcal{G}_{\mathcal{F}}^{\sim}$ of \mathcal{F} is generated by admissible transformations $\mathcal{S}_{\alpha\beta}$ and elements of $\mathcal{G}_{\mathcal{F}'}^{\sim}$. More specifically, for each admissible transformation $((\alpha, \beta), \Phi, (\tilde{\alpha}, \tilde{\beta}))$ of \mathcal{F} , we have $\Phi = \pi_* \mathscr{S}(\tilde{\alpha}) \circ \check{\Phi} \circ \pi_* \mathscr{S}(-\alpha)$ for some point transformation $\check{\Phi}$ with $(\beta, \check{\Phi}, \tilde{\beta}) \in \mathcal{G}_{\mathcal{F}'}^{\sim}$.

Theorem 3. The kernel Lie invariance algebra $\mathfrak{g}_{\mathcal{F}}^{\cap}$ of the equations from the class \mathcal{F}' is

$$\mathfrak{g}_{\mathcal{F}'}^{\cap} = \langle \mathcal{P}^t, \mathcal{P}^y, \mathcal{I}, (tx-y)\partial_u, x\partial_u, \partial_u \rangle, \quad where \quad \mathcal{P}^t := \partial_t, \quad \mathcal{P}^y := \partial_y, \quad \mathcal{I} := u\partial_u.$$

Any equation \mathcal{F}'_{β} from \mathcal{F}' is invariant with respect to the algebra

$$\mathfrak{g}_{\beta}^{\mathrm{gen}} = \langle \mathcal{P}^t, \mathcal{P}^y, \mathcal{I}, \mathcal{D}^{\beta}, \mathcal{Z}(f^{\beta}) \rangle \quad with \quad \mathcal{D}^{\beta} := (2 - \beta)t\partial_t + x\partial_x + (3 - \beta)y\partial_y, \quad \mathcal{Z}(f^{\beta}) := f^{\beta}\partial_u,$$

where the parameter function $f^{\beta} = f^{\beta}(t, x, y)$ runs through the solution set of this equation, and $\beta \in (-\infty, 5/2]$ modulo the $G_{\mathcal{F}'}^{\sim}$ -equivalence. the maximal Lie invariance algebra \mathfrak{g}_{β} of the equation \mathcal{F}_{β} coincides with $\mathfrak{g}_{\beta}^{\text{gen}}$ if and only if $\beta \in \mathbb{R} \setminus \{0, 2, 3, 5\}$. A complete list of $G_{\mathcal{F}'}^{\sim}$ -inequivalent essential Lie symmetry extensions in the class \mathcal{F}' is exhausted by the following cases:

$$\beta = 2: \quad \mathfrak{g}_2 = \mathfrak{g}_2^{\text{gen}} \dotplus \langle \mathcal{K}_2 \rangle \quad with \quad \mathcal{K}_2 = 2xy\partial_x + y^2\partial_y - xu\partial_u,$$

$$\beta = 0: \quad \mathfrak{g}_0 = \mathfrak{g}_0^{\text{gen}} \dotplus \langle \mathcal{K}_0, \mathcal{P}^3, \mathcal{P}^2, \mathcal{P}^1 \rangle \quad with$$

$$\mathcal{K}_0 = t^2\partial_t + (tx + 3y)\partial_x + 3ty\partial_y - (x^2 + 2t)u\partial_y,$$

$$\mathcal{P}^3 = 3t^2\partial_x + t^3\partial_y + 3(y - tx)u\partial_u, \quad \mathcal{P}^2 = 2t\partial_x + t^2\partial_y - xu\partial_u, \quad \mathcal{P}^1 = \partial_x + t\partial_y.$$

Corollary 4. The kernel Lie invariance algebra $\mathfrak{g}_{\mathcal{F}}^{\cap}$ of the equations from the class \mathcal{F} coincides with that for the class \mathcal{F}' , $\mathfrak{g}_{\mathcal{F}}^{\cap} = \mathfrak{g}_{\mathcal{F}'}^{\cap}$ Any equation $\mathcal{F}_{\alpha\beta}$ from \mathcal{F} is invariant with respect to the algebra

$$\mathfrak{g}_{\alpha\beta}^{\mathrm{gen}} = \left\langle \mathcal{P}^t, \mathcal{P}^y, \mathcal{I}, \mathcal{D}^{\alpha\beta}, \mathcal{Z}(f^{\alpha\beta}) \right\rangle$$

with $\mathcal{D}^{\alpha\beta} := (2-\beta)t\partial_t + (x-\alpha)\partial_x + ((3-\beta)y-\alpha t)\partial_y$, $\mathcal{Z}(f^{\alpha\beta}) := f^{\alpha\beta}\partial_u$, and the parameter function $f^{\alpha\beta} = f^{\alpha\beta}(t,x,y)$ running through the solution set of this equation. Modulo the $\mathcal{G}_{\mathcal{F}'}^{\sim}$ -equivalence, we can assume $\beta \in (-\infty, 5/2]$, and a complete list of $\mathcal{G}_{\mathcal{F}'}^{\sim}$ -inequivalent essential Lie symmetry extensions in the class \mathcal{F} is exhausted by the counterparts of those in the class \mathcal{F}' , \mathcal{F}_{00} and \mathcal{F}_{02} . An analogous list up to the $\mathcal{G}_{\mathcal{F}'}^{\sim}$ -equivalence consists of the equations \mathcal{F}_{00} , \mathcal{F}_{02} , \mathcal{F}_{03} and \mathcal{F}_{05} .

References

- Koval S.D., Bihlo A. and Popovych R.O., Extended symmetry analysis of remarkable (1+2)-dimensional Fokker–Planck equation, European J. Appl. Math. 34 (2023), 1067–1098, arXiv:2205.13526.
- Koval S.D. and Popovych R.O., Extended symmetry analysis of (1+2)-dimensional fine Kolmogorov backward equation, Stud. Appl. Math. (2024), https://doi.org/10.1111/sapm.12695, 1–30.
- [3] Vaneeva O.O., Bihlo A. and Popovych R.O., Generalization of the algebraic method of group classification with application to nonlinear wave and elliptic equations, *Commun. Nonlinear Sci. Numer. Simul.* **91** (2020), 105419, arXiv:2002.08939.